当前位置:首页 > 文章列表 > 数据库 > MySQL > ClickHouse Merge性能测试

ClickHouse Merge性能测试

来源:SegmentFault 2023-01-20 20:53:40 0浏览 收藏

小伙伴们有没有觉得学习数据库很有意思?有意思就对了!今天就给大家带来《ClickHouse Merge性能测试》,以下内容将会涉及到MySQL、PHP、列式数据库,若是在学习中对其中部分知识点有疑问,或许看了本文就能帮到你!

ClickHouse 性能测试

为了验证ClickHouse性能,将结合实际业务场景对clickhouse进行多维度测试。

造测试数据

在实际业务中最常见的业务场景,有二张表,订单主表和订单明细表
通常二张表会

join
查询,或者
group by
查询,下面就会使用
clickhouse
对这种情况进行测试

定义表结构

test_order
: 主表
表结构:

CREATE TABLE `test_order` (
  `id` bigint(11) NOT NULL AUTO_INCREMENT,
  `field_name_1` varchar(60) NOT NULL,
  `field_name_2` varchar(60) NOT NULL,
  `field_name_3` varchar(60) NOT NULL,
  `field_name_4` varchar(60) NOT NULL,
  `field_name_5` varchar(60) NOT NULL,
  `field_name_6` varchar(60) NOT NULL,
  `field_name_7` varchar(60) NOT NULL,
  `field_name_8` varchar(60) NOT NULL,
  `field_name_9` varchar(60) NOT NULL,
  `field_name_10` varchar(60) NOT NULL,
  `field_id_1` int(11) NOT NULL,
  `field_id_2` int(11) NOT NULL,
  `field_id_3` int(11) NOT NULL,
  `field_id_4` int(11) NOT NULL,
  `field_id_5` int(11) NOT NULL,
  `field_id_6` int(11) NOT NULL,
  `field_id_7` int(11) NOT NULL,
  `field_id_8` int(11) NOT NULL,
  `field_id_9` int(11) NOT NULL,
  `field_id_10` int(11) NOT NULL,
  `field_date_1` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP,
  `field_date_2` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP,
  `field_date_3` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP,
  `field_date_4` datetime NOT NULL DEFAULT CURRENT_TIMESTAMP,
  `field_date_5` datetime NOT NULL DEFAULT CURRENT_TIMESTAMP,
  `field_date_6` datetime NOT NULL DEFAULT CURRENT_TIMESTAMP,
  `field_date_7` datetime NOT NULL DEFAULT CURRENT_TIMESTAMP,
  `field_date_8` datetime NOT NULL DEFAULT CURRENT_TIMESTAMP,
  `field_date_9` datetime NOT NULL DEFAULT CURRENT_TIMESTAMP,
  PRIMARY KEY (`id`),
  KEY `idx_field_1` (`field_name_1`,`field_id_1`) USING BTREE
) ENGINE=InnoDB AUTO_INCREMENT=1043 DEFAULT CHARSET=utf8mb4;

test_order_detail
: 明细表,为了增加
sql
查询复杂的,定义了41个字段
表结构

CREATE TABLE `test_order_detail` (
  `id` bigint(11) NOT NULL AUTO_INCREMENT,
  `order_id` bigint(11) NOT NULL,
  `field_name_1` varchar(60) NOT NULL,
  `field_name_2` varchar(60) NOT NULL,
  `field_name_3` varchar(60) NOT NULL,
  `field_name_4` varchar(60) NOT NULL,
  `field_name_5` varchar(60) NOT NULL,
  `field_name_6` varchar(60) NOT NULL,
  `field_name_7` varchar(60) NOT NULL,
  `field_name_8` varchar(60) NOT NULL,
  `field_name_9` varchar(60) NOT NULL,
  `field_name_10` varchar(60) NOT NULL,
  `field_name_11` varchar(60) NOT NULL,
  `field_name_12` varchar(60) NOT NULL,
  `field_name_13` varchar(60) NOT NULL,
  `field_name_14` varchar(60) NOT NULL,
  `field_name_15` varchar(60) NOT NULL,
  `field_name_16` varchar(60) NOT NULL,
  `field_name_17` varchar(60) NOT NULL,
  `field_name_18` varchar(60) NOT NULL,
  `field_name_19` varchar(60) NOT NULL,
  `field_name_20` varchar(60) NOT NULL,
  `field_id_1` int(11) NOT NULL,
  `field_id_2` int(11) NOT NULL,
  `field_id_3` int(11) NOT NULL,
  `field_id_4` int(11) NOT NULL,
  `field_id_5` int(11) NOT NULL,
  `field_id_6` int(11) NOT NULL,
  `field_id_7` int(11) NOT NULL,
  `field_id_8` int(11) NOT NULL,
  `field_id_9` int(11) NOT NULL,
  `field_id_10` int(11) NOT NULL,
  `field_date_1` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP,
  `field_date_2` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP,
  `field_date_3` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP,
  `field_date_4` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP,
  `field_date_5` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP,
  `field_date_6` datetime NOT NULL DEFAULT CURRENT_TIMESTAMP,
  `field_date_7` datetime NOT NULL DEFAULT CURRENT_TIMESTAMP,
  `field_date_8` datetime NOT NULL DEFAULT CURRENT_TIMESTAMP,
  `field_date_9` datetime NOT NULL DEFAULT CURRENT_TIMESTAMP,
  PRIMARY KEY (`id`),
  KEY `idx_order_id` (`order_id`) USING BTREE
) ENGINE=InnoDB AUTO_INCREMENT=18129081 DEFAULT CHARSET=utf8mb4;

写入测试数据到mysql

test_order
是主表,插入
1024
行数据

test_order_detail
表是重头戏,这里分批次写入
1800
万行数据,每列数据均使用随机函数生成,代码比较简单,就不展示了

mysql
数据存储目录,
.ibd
文件是
test_order_detail
表的数据和索引文件内容,已经达到了
13G
,数据量很大了

-rw-r-----@ 1 jiao  staff    14K  8 15 12:46 test_order_detail.frm
-rw-r-----@ 1 jiao  staff    13G  8 16 20:30 test_order_detail.ibd

从mysql查询数据写到.csv

利用

clickhouse
可以直接读取
csv
文件插入到表中特性
这里从
mysql
中每次读
10万
数据写入一个
csv
文件
生成了
180
多个
.csv
文件

➜  csv ll
total 29852872
-rw-r--r--  1 jiao  staff    71M  8 21 18:10 1.csv
-rw-r--r--  1 jiao  staff    74M  8 21 18:10 10.csv
-rw-r--r--  1 jiao  staff    78M  8 21 18:15 100.csv
-rw-r--r--  1 jiao  staff    78M  8 21 18:15 101.csv
-rw-r--r--  1 jiao  staff    78M  8 21 18:15 102.csv
-rw-r--r--  1 jiao  staff    78M  8 21 18:15 103.csv
-rw-r--r--  1 jiao  staff    78M  8 21 18:15 104.csv
-rw-r--r--  1 jiao  staff    78M  8 21 18:16 105.csv
-rw-r--r--  1 jiao  staff    78M  8 21 18:16 106.csv
-rw-r--r--  1 jiao  staff    78M  8 21 18:16 107.csv
-rw-r--r--  1 jiao  staff    78M  8 21 18:16 108.csv
-rw-r--r--  1 jiao  staff    78M  8 21 18:16 109.csv
-rw-r--r--  1 jiao  staff    75M  8 21 18:10 11.csv
-rw-r--r--  1 jiao  staff    78M  8 21 18:16 110.csv
-rw-r--r--  1 jiao  staff    78M  8 21 18:16 111.csv
-rw-r--r--  1 jiao  staff    78M  8 21 18:16 112.csv
-rw-r--r--  1 jiao  staff    78M  8 21 18:16 113.csv
-rw-r--r--  1 jiao  staff    78M  8 21 18:16 114.csv
-rw-r--r--  1 jiao  staff    78M  8 21 18:16 115.csv
-rw-r--r--  1 jiao  staff    78M  8 21 18:16 116.csv
-rw-r--r--  1 jiao  staff    78M  8 21 18:16 117.csv
-rw-r--r--  1 jiao  staff    78M  8 21 18:16 118.csv
-rw-r--r--  1 jiao  staff    78M  8 21 18:17 119.csv

使用php将csv文件插入到clickhouse

安装

php
语言
clickhouse
第三方包:https://github.com/smi2/phpClickHouse
该第三方包使用的是
http
协议
先在
clickhouse
中创建表

CREATE TABLE test.test_order_detail
(
    `id` Int64,
    `order_id` Int64,
    `field_name_1` String,
    `field_name_2` String,
    `field_name_3` String,
    `field_name_4` String,
    `field_name_5` String,
    `field_name_6` String,
    `field_name_7` String,
    `field_name_8` String,
    `field_name_9` String,
    `field_name_10` String,
    `field_name_11` String,
    `field_name_12` String,
    `field_name_13` String,
    `field_name_14` String,
    `field_name_15` String,
    `field_name_16` String,
    `field_name_17` String,
    `field_name_18` String,
    `field_name_19` String,
    `field_name_20` String,
    `field_id_1` Int64,
    `field_id_2` Int64,
    `field_id_3` Int64,
    `field_id_4` Int64,
    `field_id_5` Int64,
    `field_id_6` Int64,
    `field_id_7` Int64,
    `field_id_8` Int64,
    `field_id_9` Int64,
    `field_id_10` Int64,
    `field_date_1` DateTime,
    `field_date_2` DateTime,
    `field_date_3` DateTime,
    `field_date_4` DateTime,
    `field_date_5` DateTime,
    `field_date_6` DateTime,
    `field_date_7` DateTime,
    `field_date_8` DateTime,
    `field_date_9` DateTime
)
ENGINE = MergeTree
ORDER BY id
SETTINGS index_granularity = 8192

执行脚本

php
脚本,代码比较简单,部分代码如下

$begin = microtime(true);
        $config = [
            'host'     => '172.16.101.134',
            'port'     => '8123',
            'username' => 'caps',
            'password' => '123456'
        ];
        $db     = new Client($config);
        $db->database('test');
        $db->setTimeout(60);       // 10 seconds
        $db->setConnectTimeOut(50); // 5 seconds
//        $tables = $db->showTables();

        //insert from csv
        $connect = microtime(true);
        for ($j = 1; $j insertBatchFiles('test_order_detail_tmp', $file_data_names);
            usleep(1000);
        }
        echo microtime(true) - $begin . PHP_EOL;
        echo microtime(true) - $connect . PHP_EOL;

插入数据性能测试

表没有定义分区,每行数据随机生成,一共有42列,每行数据量0.8k左右

批量插入行数耗时数据量
1千0.05s0.7M
1万0.25s7.1M
5万1.0s36M
10万2.0s73M
20万3.6s146M

在不同机器上测试结果可能出入很大,从本机器测试结果来看,每次插入数据适合1k - 5w,可以保证1秒之内就能成功。

插入数据可能会出现的错误
1.若设置了分区键,而插入的数据会导致分区太多,则插入失败,默认最大100个分区
2.插入数据太多导致的内存溢出

数据压缩比

1800万数据量
Mysql占用存储空间:13G
ClickHouse中占用:4.1G

由于所有字段都是随机生成,3倍多数据压缩比已经很高了,且lz4压缩算法的解压效率也非常高

查询性能测试

test_order_detail
1800
万数据
test_order
1000
行数据
下面对业务中比较常用的
sql
进行测试

Test1

select count(*) from test.test_order_detail

统计总条数,非常常见的

sql
了吧,
ClickHouse
count.txt
文件中保存了总条数,所以返回确实很快
Mysql耗时ClickHouse耗时
20s0.003s

clieckhouse 查询结果

1 rows in set. Elapsed: 0.003 sec. 

Test2

select a.order_id,sum(a.field_id_1),sum(a.field_id_2) from test.test_order_detail as a join test.test_order as b on a.order_id = b.id group by a.order_id;

join表聚合数据 这个级别的数据mysql已经扛不住了

Mysql耗时ClickHouse耗时
--0.450s

clieckhouse 查询结果,因为没有使用所有,扫描了全表,总共处理1800万行数据,没秒居然可以处理4000万行数据,效率非常高

1042 rows in set. Elapsed: 0.450 sec. Processed 18.13 million rows, 435.11 MB (40.28 million rows/s., 966.66 MB/s.) 

Test3

select a.order_id,sum(a.field_id_1),sum(a.field_id_2) from test.test_order_detail as a join test.test_order as b on a.order_id = b.id group by a.order_id limit 1,20;

加个limit试试 等了很久mysql依然没有返回结果

Mysql耗时ClickHouse耗时
--0.574s

clieckhouse 查询结果

20 rows in set. Elapsed: 0.574 sec. Processed 18.13 million rows, 435.11 MB (31.60 million rows/s., 758.37 MB/s.) 

Test4

select count(*) from test.test_order_detail

单表聚合数据 等了很久mysql依然没有返回结果

Mysql耗时ClickHouse耗时
--0.212

clieckhouse 查询结果)

20 rows in set. Elapsed: 0.212 sec. Processed 18.13 million rows, 435.10 MB (85.63 million rows/s., 2.06 GB/s.) 

总结

在数据量比较少的情况,且sql比较简单的场景下,mysql还是非常方便的,但在大数据场景下,mysql就捉襟见肘了,通过本文的以下简单测试,就是发现clickhouse非常适合大数据场景下的数据查询,利用

列式存储
数据压缩
特性,可以高效率处理数据,另外
SummingMergeTree
AggregatingMergeTree
更高效率的进行数据预聚合,有时间会进一步分享更多内容。

今天关于《ClickHouse Merge性能测试》的内容介绍就到此结束,如果有什么疑问或者建议,可以在golang学习网公众号下多多回复交流;文中若有不正之处,也希望回复留言以告知!

版本声明
本文转载于:SegmentFault 如有侵犯,请联系study_golang@163.com删除
SpringBoot项目实践过程中遇到过哪些问题?SpringBoot项目实践过程中遇到过哪些问题?
上一篇
SpringBoot项目实践过程中遇到过哪些问题?
话说当年学习Java所踩过的坑。。。初学者必看
下一篇
话说当年学习Java所踩过的坑。。。初学者必看
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    543次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    514次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    499次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • SEO  AI Mermaid 流程图:自然语言生成,文本驱动可视化创作
    AI Mermaid流程图
    SEO AI Mermaid 流程图工具:基于 Mermaid 语法,AI 辅助,自然语言生成流程图,提升可视化创作效率,适用于开发者、产品经理、教育工作者。
    624次使用
  • 搜获客笔记生成器:小红书医美爆款内容AI创作神器
    搜获客【笔记生成器】
    搜获客笔记生成器,国内首个聚焦小红书医美垂类的AI文案工具。1500万爆款文案库,行业专属算法,助您高效创作合规、引流的医美笔记,提升运营效率,引爆小红书流量!
    630次使用
  • iTerms:一站式法律AI工作台,智能合同审查起草与法律问答专家
    iTerms
    iTerms是一款专业的一站式法律AI工作台,提供AI合同审查、AI合同起草及AI法律问答服务。通过智能问答、深度思考与联网检索,助您高效检索法律法规与司法判例,告别传统模板,实现合同一键起草与在线编辑,大幅提升法律事务处理效率。
    646次使用
  • TokenPony:AI大模型API聚合平台,一站式接入,高效稳定高性价比
    TokenPony
    TokenPony是讯盟科技旗下的AI大模型聚合API平台。通过统一接口接入DeepSeek、Kimi、Qwen等主流模型,支持1024K超长上下文,实现零配置、免部署、极速响应与高性价比的AI应用开发,助力专业用户轻松构建智能服务。
    713次使用
  • 迅捷AIPPT:AI智能PPT生成器,高效制作专业演示文稿
    迅捷AIPPT
    迅捷AIPPT是一款高效AI智能PPT生成软件,一键智能生成精美演示文稿。内置海量专业模板、多样风格,支持自定义大纲,助您轻松制作高质量PPT,大幅节省时间。
    610次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码