当前位置:首页 > 文章列表 > 文章 > python教程 > 使用OpenAi的食品识别和营养估算

使用OpenAi的食品识别和营养估算

来源:dev.to 2025-02-11 20:19:00 0浏览 收藏

大家好,今天本人给大家带来文章《使用OpenAi的食品识别和营养估算》,文中内容主要涉及到,如果你对文章方面的知识点感兴趣,那就请各位朋友继续看下去吧~希望能真正帮到你们,谢谢!

这是您可以在短短20分钟内使用openai构建简单的食物识别和营养估算应用程序的方法 它的工作原理

>图像编码:图像被转换为​​base64格式,以通过openai的api处理。

>食物识别提示:该应用将图像发送到openai,以识别食物及其各自的数量。

营养估计:使用另一个提示来估计基于确定的食品及其数量的营养价值。

> 显示结果:使用gradio显示出估计的卡路里,蛋白质,脂肪和碳水化合物的值。

>

这是一个非常简单的代码,可以改进/更好地组织起来,但是想法是说明它可以轻松地创建一个简单的poc。 如果您正在从事有趣的项目,请在

上与我联系

from openai import OpenAI
from pydantic import BaseModel
import base64
from typing import List
import gradio as gr

def encode_image(image_path):
  with open(image_path, "rb") as image_file:
    return base64.b64encode(image_file.read()).decode('utf-8')

openai_api_key = "key"
client = OpenAI(api_key=openai_api_key)

"""pydantic models to record food items and nutrient information, 
not necessary but helpful if you intend to create apis 
or use the data in other ways.
"""
class Food(BaseModel):
    name: str
    quantity: str

class Items(BaseModel):
    items: List[Food]

class Nutrient(BaseModel):
    steps: List[str]
    reasons: str
    kcal: str
    fat: str
    proteins: str
    carbohydrates: str


def recognize_items(image):
    """This function takes an image and returns a list of recognized food items along with their count and the nutrition. 
    """
    #first recognize items and quantities
    messages = [
        {
        "role": "user",
        "content": [
            {
            "type": "text",
            "text": f"You are an expert in recognising individual food items and their quantity. Give count(number) for countable items and an estimate for liquid/mixed or non countable items.  For example if you have one burger,two pastries, 2 pav, bhaji and dal in an image, you return burger,pastry,pav, bhaji and dal along with the count or estimates without any duplicates. For non countable items give an estimate in grams while explaining like 'looks 1 teaspoon of sauce, so around 5-8 grams' or 'looks 1 serving of bhaji, so around 150-200gms'. Given the image below, recognise food items with their quantity.",
            }
        ],
        }
    ]

    base64_image = encode_image(image)
    dic = {
                "type": "image_url",
                "image_url": {
                    "url":  f"data:image/jpeg;base64,{base64_image}",
                    "detail": "low"
                },
            }
    messages[0]["content"].append(dic)
    response = client.beta.chat.completions.parse(
    model="gpt-4o-mini",
    messages=messages,
    response_format=Items,
    max_tokens=300,
    temperature=0.1
    )
    foods = response.choices[0].message.parsed

    res = ""
    for food in foods.items:
        res=res+food.name+ " "+food.quantity+"\n"

    #now estimate nutrition, we can use a separate model for this task
    messages = [
        {
        "role": "user",
        "content": [
            {
            "type": "text",
            "text": f"You are an expert in estimating information regarding nutririon given the food items and thier quantities. Think step by step considering the given food items and their quantities, and give an estimated range(lowest - highest) of kcal, range(lowest - highest) of fat, range of proteins(lowest - highest) and carbohydrates(lowest - highest). Ignore contributions from minor items. Ensure your estimations are solely based on the provided quantities.  Return steps,reasons and estimations if this food was consumed. \n\nfood and quantity consumed by user: {res} \n\n.",
            }
        ],
        }
    ]
    dic = {
                "type": "image_url",
                "image_url": {
                    "url":  f"data:image/jpeg;base64,{base64_image}",
                    "detail": "low"
                },
            }
    messages[0]["content"].append(dic)
    response = client.beta.chat.completions.parse(
    model="gpt-4o-mini",
    messages=messages,
    response_format=Nutrient,
    max_tokens=500,
    temperature=0.1
    )
    nuts = response.choices[0].message.parsed
    steps = " ".join(nuts.steps)
    res=res+"\n"+steps+"\n\ncalories: "+nuts.kcal+" \nfats: "+nuts.fat+" \nproteins: "+nuts.proteins+" \ncarbohydrates: "+nuts.carbohydrates+"\n"+nuts.reasons+"\n"+"*These are estimations based on image. They might not be perfect or accurate. Please calculate based on the food you consume for a more precise estimate."
    return res


with gr.Blocks() as demo:
    foods=None
    with gr.Row():
        image_input = gr.Image(label="Upload Image",height=300,width=300,type="filepath")

    with gr.Row() as but_row:
        submit_btn = gr.Button("Detect food and quantity")

    with gr.Row() as text_responses_row: 
        text_response_1 = gr.Textbox(label="Detected food and quantity",scale=1)

    submit_btn.click(
        recognize_items,
        inputs=[image_input],
        outputs=[text_response_1]
    )

if __name__ == "__main__":
    demo.launch() 

好了,本文到此结束,带大家了解了《使用OpenAi的食品识别和营养估算》,希望本文对你有所帮助!关注golang学习网公众号,给大家分享更多文章知识!

版本声明
本文转载于:dev.to 如有侵犯,请联系study_golang@163.com删除
哪吒汽车计划融资40亿元-45亿元,领投方或出资30亿元哪吒汽车计划融资40亿元-45亿元,领投方或出资30亿元
上一篇
哪吒汽车计划融资40亿元-45亿元,领投方或出资30亿元
京东方“一种柔性线路板、发光模组和显示装置”专利公布
下一篇
京东方“一种柔性线路板、发光模组和显示装置”专利公布
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 笔灵AI生成答辩PPT:高效制作学术与职场PPT的利器
    笔灵AI生成答辩PPT
    探索笔灵AI生成答辩PPT的强大功能,快速制作高质量答辩PPT。精准内容提取、多样模板匹配、数据可视化、配套自述稿生成,让您的学术和职场展示更加专业与高效。
    23次使用
  • 知网AIGC检测服务系统:精准识别学术文本中的AI生成内容
    知网AIGC检测服务系统
    知网AIGC检测服务系统,专注于检测学术文本中的疑似AI生成内容。依托知网海量高质量文献资源,结合先进的“知识增强AIGC检测技术”,系统能够从语言模式和语义逻辑两方面精准识别AI生成内容,适用于学术研究、教育和企业领域,确保文本的真实性和原创性。
    35次使用
  • AIGC检测服务:AIbiye助力确保论文原创性
    AIGC检测-Aibiye
    AIbiye官网推出的AIGC检测服务,专注于检测ChatGPT、Gemini、Claude等AIGC工具生成的文本,帮助用户确保论文的原创性和学术规范。支持txt和doc(x)格式,检测范围为论文正文,提供高准确性和便捷的用户体验。
    37次使用
  • 易笔AI论文平台:快速生成高质量学术论文的利器
    易笔AI论文
    易笔AI论文平台提供自动写作、格式校对、查重检测等功能,支持多种学术领域的论文生成。价格优惠,界面友好,操作简便,适用于学术研究者、学生及论文辅导机构。
    47次使用
  • 笔启AI论文写作平台:多类型论文生成与多语言支持
    笔启AI论文写作平台
    笔启AI论文写作平台提供多类型论文生成服务,支持多语言写作,满足学术研究者、学生和职场人士的需求。平台采用AI 4.0版本,确保论文质量和原创性,并提供查重保障和隐私保护。
    40次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码