Pytorch中的Randomhorizontalflip
来源:dev.to
2025-02-09 19:00:56
0浏览
收藏
大家好,我们又见面了啊~本文《Pytorch中的Randomhorizontalflip》的内容中将会涉及到等等。如果你正在学习文章相关知识,欢迎关注我,以后会给大家带来更多文章相关文章,希望我们能一起进步!下面就开始本文的正式内容~
给我买咖啡☕
*备忘录:
- 我的帖子解释了bersanverticalflip()。 >
- 我的帖子解释了牛津iiitpet()。
randomhorizontalflip()可以随机和水平覆盖图像,如下所示:
*备忘录:
- 初始化的第一个参数是p(可选默认:0.5-type:int或float):
*备忘录:
- 这是图像是否被翻转的可能性。 >
- 必须为0 < = x < = 1。
第一个参数是img(必需类型:pil图像或张量(int)):
*备忘录:
-
- 张量必须为2d或3d。
- 不使用img =。
-
from torchvision.datasets import OxfordIIITPet from torchvision.transforms.v2 import RandomHorizontalFlip randomhorizontalflip = RandomHorizontalFlip() randomhorizontalflip = RandomHorizontalFlip(p=0.5) randomhorizontalflip # RandomHorizontalFlip(p=0.5) randomhorizontalflip.p # 0.5 origin_data = OxfordIIITPet( root="data", transform=None # transform=RandomHorizontalFlip(p=0) ) p1_data = OxfordIIITPet( root="data", transform=RandomHorizontalFlip(p=1) ) p05_data = OxfordIIITPet( root="data", transform=RandomHorizontalFlip(p=0.5) ) import matplotlib.pyplot as plt def show_images1(data, main_title=None): plt.figure(figsize=[10, 5]) plt.suptitle(t=main_title, y=0.8, fontsize=14) for i, (im, _) in zip(range(1, 6), data): plt.subplot(1, 5, i) plt.imshow(X=im) plt.xticks(ticks=[]) plt.yticks(ticks=[]) plt.tight_layout() plt.show() show_images1(data=origin_data, main_title="origin_data") print() show_images1(data=p1_data, main_title="p1_data") show_images1(data=p1_data, main_title="p1_data") show_images1(data=p1_data, main_title="p1_data") print() show_images1(data=p05_data, main_title="p05_data") show_images1(data=p05_data, main_title="p05_data") show_images1(data=p05_data, main_title="p05_data") # ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓ def show_images2(data, main_title=None, prob=0): plt.figure(figsize=[10, 5]) plt.suptitle(t=main_title, y=0.8, fontsize=14) for i, (im, _) in zip(range(1, 6), data): plt.subplot(1, 5, i) rhf = RandomHorizontalFlip(p=prob) plt.imshow(X=rhf(im)) plt.xticks(ticks=[]) plt.yticks(ticks=[]) plt.tight_layout() plt.show() show_images2(data=origin_data, main_title="origin_data") print() show_images2(data=origin_data, main_title="p1_data", prob=1) show_images2(data=origin_data, main_title="p1_data", prob=1) show_images2(data=origin_data, main_title="p1_data", prob=1) print() show_images2(data=origin_data, main_title="p05_data", prob=0.5) show_images2(data=origin_data, main_title="p05_data", prob=0.5) show_images2(data=origin_data, main_title="p05_data", prob=0.5)
以上就是本文的全部内容了,是否有顺利帮助你解决问题?若是能给你带来学习上的帮助,请大家多多支持golang学习网!更多关于文章的相关知识,也可关注golang学习网公众号。
版本声明
本文转载于:dev.to 如有侵犯,请联系study_golang@163.com删除

- 上一篇
- NeurIPS 2024 | 用LLM探寻隐秘的因果世界

- 下一篇
- 日产、本田历史性合并失败,富士康迎来机会
查看更多
最新文章
-
- 文章 · python教程 | 5小时前 | Python Matplotlib 数据可视化 销售额 柱状图
- Python绘制柱状图的超详细教程
- 222浏览 收藏
-
- 文章 · python教程 | 5小时前 |
- Python学习路径推荐与实用建议
- 438浏览 收藏
-
- 文章 · python教程 | 6小时前 | Django模型 models.py ForeignKey 模型字段 __str__方法
- 在Python中如何定义Django模型?
- 428浏览 收藏
-
- 文章 · python教程 | 6小时前 |
- Python搭建WebSocket服务器攻略
- 123浏览 收藏
-
- 文章 · python教程 | 7小时前 | PostgreSQL orm 连接 sqlalchemy psycopg2
- Python操作PostgreSQL详细教程及实例
- 163浏览 收藏
-
- 文章 · python教程 | 8小时前 | 并行计算 随机数生成器 精度 蒙特卡洛方法 Chudnovsky算法
- Python计算圆周率的终极秘籍
- 484浏览 收藏
-
- 文章 · python教程 | 8小时前 |
- Qwen2.5-Omni-7B在modelscope导入失败解决攻略
- 169浏览 收藏
-
- 文章 · python教程 | 9小时前 | 复杂查询 sqlalchemy unittest 事务回滚 测试数据隔离
- Python数据库操作测试技巧大全
- 425浏览 收藏
-
- 文章 · python教程 | 10小时前 |
- PyCharm远程调试Linux服务器Python项目攻略
- 345浏览 收藏
查看更多
课程推荐
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
查看更多
AI推荐
-
- 笔灵AI生成答辩PPT
- 探索笔灵AI生成答辩PPT的强大功能,快速制作高质量答辩PPT。精准内容提取、多样模板匹配、数据可视化、配套自述稿生成,让您的学术和职场展示更加专业与高效。
- 23次使用
-
- 知网AIGC检测服务系统
- 知网AIGC检测服务系统,专注于检测学术文本中的疑似AI生成内容。依托知网海量高质量文献资源,结合先进的“知识增强AIGC检测技术”,系统能够从语言模式和语义逻辑两方面精准识别AI生成内容,适用于学术研究、教育和企业领域,确保文本的真实性和原创性。
- 35次使用
-
- AIGC检测-Aibiye
- AIbiye官网推出的AIGC检测服务,专注于检测ChatGPT、Gemini、Claude等AIGC工具生成的文本,帮助用户确保论文的原创性和学术规范。支持txt和doc(x)格式,检测范围为论文正文,提供高准确性和便捷的用户体验。
- 37次使用
-
- 易笔AI论文
- 易笔AI论文平台提供自动写作、格式校对、查重检测等功能,支持多种学术领域的论文生成。价格优惠,界面友好,操作简便,适用于学术研究者、学生及论文辅导机构。
- 47次使用
-
- 笔启AI论文写作平台
- 笔启AI论文写作平台提供多类型论文生成服务,支持多语言写作,满足学术研究者、学生和职场人士的需求。平台采用AI 4.0版本,确保论文质量和原创性,并提供查重保障和隐私保护。
- 40次使用
查看更多
相关文章
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览