Pytorch中的Fivecrop
来源:dev.to
2025-02-06 13:09:56
0浏览
收藏
文章小白一枚,正在不断学习积累知识,现将学习到的知识记录一下,也是将我的所得分享给大家!而今天这篇文章《Pytorch中的Fivecrop》带大家来了解一下##content_title##,希望对大家的知识积累有所帮助,从而弥补自己的不足,助力实战开发!
给我买咖啡☕
*备忘录:
- 我的帖子解释了牛津iiitpet()。
> fivecrop()可以将图像裁剪成5个部分(左上角,右上,左下,右下和中心),如下所示:
- >初始化的第一个参数是大小(必需类型:int或tuple/list/list(int)或size()):
*备忘录:
-
- 是[高度,宽度]。
- >必须是1个< = x。
- 元组/列表必须是具有1或2个元素的1d。
- 单个值(int或tuple/list(int))是指[size,size]。
- 第一个参数是img(必需类型:pil图像或张量(int)): *备忘录:
张量必须为2d或3d。
- 不使用img =。
- 建议根据v1或v2使用v2?我应该使用哪一个?
from torchvision.datasets import OxfordIIITPet from torchvision.transforms.v2 import FiveCrop fivecrop = FiveCrop(size=100) fivecrop # FiveCrop(size=(100, 100)) fivecrop.size # (100, 100) origin_data = OxfordIIITPet( root="data", transform=None ) s500_394origin_data = OxfordIIITPet( # `s` is size. root="data", transform=FiveCrop(size=[500, 394]) ) s300_data = OxfordIIITPet( root="data", transform=FiveCrop(size=300) ) s200_data = OxfordIIITPet( root="data", transform=FiveCrop(size=200) ) s100_data = OxfordIIITPet( root="data", transform=FiveCrop(size=100) ) s50_data = OxfordIIITPet( root="data", transform=FiveCrop(size=50) ) s10_data = OxfordIIITPet( root="data", transform=FiveCrop(size=10) ) s1_data = OxfordIIITPet( root="data", transform=FiveCrop(size=1) ) s200_300_data = OxfordIIITPet( root="data", transform=FiveCrop(size=[200, 300]) ) s300_200_data = OxfordIIITPet( root="data", transform=FiveCrop(size=[300, 200]) ) import matplotlib.pyplot as plt def show_images1(fcims, main_title=None): plt.figure(figsize=[10, 5]) plt.suptitle(t=main_title, y=0.8, fontsize=14) titles = ['Top-left', 'Top-right', 'Bottom-left', 'Bottom-right', 'Center'] for i, fcim in zip(range(1, 6), fcims): plt.subplot(1, 5, i) plt.title(label=titles[i-1], fontsize=14) plt.imshow(X=fcim) plt.tight_layout() plt.show() plt.figure(figsize=(7, 9)) plt.title(label="s500_394origin_data", fontsize=14) plt.imshow(X=origin_data[0][0]) show_images1(fcims=s500_394origin_data[0][0], main_title="s500_394origin_data") show_images1(fcims=s300_data[0][0], main_title="s300_data") show_images1(fcims=s200_data[0][0], main_title="s200_data") show_images1(fcims=s100_data[0][0], main_title="s100_data") show_images1(fcims=s50_data[0][0], main_title="s50_data") show_images1(fcims=s10_data[0][0], main_title="s10_data") show_images1(fcims=s1_data[0][0], main_title="s1_data") show_images1(fcims=s200_300_data[0][0], main_title="s200_300_data") show_images1(fcims=s300_200_data[0][0], main_title="s300_200_data") # ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓ def show_images2(im, main_title=None, s=None): plt.figure(figsize=[10, 5]) plt.suptitle(t=main_title, y=0.8, fontsize=14) titles = ['Top-left', 'Top-right', 'Bottom-left', 'Bottom-right', 'Center'] if not s: s = [im.size[1], im.size[0]] fc = FiveCrop(size=s) # Here for i, fcim in zip(range(1, 6), fc(im)): plt.subplot(1, 5, i) plt.title(label=titles[i-1], fontsize=14) plt.imshow(X=fcim) # Here plt.tight_layout() plt.show() plt.figure(figsize=(7, 9)) plt.title(label="s500_394origin_data", fontsize=14) plt.imshow(X=origin_data[0][0]) show_images2(im=origin_data[0][0], main_title="s500_394origin_data") # show_images2(im=origin_data[0][0], main_title="s500_394origin_data", # s=[500, 394]) show_images2(im=origin_data[0][0], main_title="s300_data", s=300) show_images2(im=origin_data[0][0], main_title="s200_data", s=200) show_images2(im=origin_data[0][0], main_title="s100_data", s=100) show_images2(im=origin_data[0][0], main_title="s50_data", s=50) show_images2(im=origin_data[0][0], main_title="s10_data", s=10) show_images2(im=origin_data[0][0], main_title="s1_data", s=1) show_images2(im=origin_data[0][0], main_title="s200_300_data", s=[200, 300]) show_images2(im=origin_data[0][0], main_title="s300_200_data", s=[300, 200])
本篇关于《Pytorch中的Fivecrop》的介绍就到此结束啦,但是学无止境,想要了解学习更多关于文章的相关知识,请关注golang学习网公众号!
版本声明
本文转载于:dev.to 如有侵犯,请联系study_golang@163.com删除

- 上一篇
- Cirrus Logic第三季度营收5.557亿美元,产品需求强劲

- 下一篇
- 将弹簧MVC应用程序转换为Mendix
查看更多
最新文章
-
- 文章 · python教程 | 15分钟前 |
- Python判断键是否存在方法
- 479浏览 收藏
-
- 文章 · python教程 | 18分钟前 | Python 继承 类型检查 抽象基类 isinstance()
- Python中isinstance()使用方法详解
- 140浏览 收藏
-
- 文章 · python教程 | 37分钟前 |
- Pandas多列字符串匹配与列扩展技巧
- 308浏览 收藏
-
- 文章 · python教程 | 48分钟前 | Python Python数据处理
- Python处理文本编码问题的技巧
- 315浏览 收藏
-
- 文章 · python教程 | 51分钟前 |
- Python跨模块异常处理技巧分享
- 473浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- PandasNumPy行数据相加技巧
- 264浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Ubuntu下Docker部署Python应用全攻略
- 407浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python高效读写Parquet技巧
- 339浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Pythonrequests发送HTTP请求教程
- 490浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python+TesseractOCR训练工具教程
- 213浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python连接PostgreSQL教程及psycopg2配置指南
- 288浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- PyLaTeX生成目录空白页怎么解决
- 228浏览 收藏
查看更多
课程推荐
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 514次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 499次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
查看更多
AI推荐
-
- AI Mermaid流程图
- SEO AI Mermaid 流程图工具:基于 Mermaid 语法,AI 辅助,自然语言生成流程图,提升可视化创作效率,适用于开发者、产品经理、教育工作者。
- 443次使用
-
- 搜获客【笔记生成器】
- 搜获客笔记生成器,国内首个聚焦小红书医美垂类的AI文案工具。1500万爆款文案库,行业专属算法,助您高效创作合规、引流的医美笔记,提升运营效率,引爆小红书流量!
- 431次使用
-
- iTerms
- iTerms是一款专业的一站式法律AI工作台,提供AI合同审查、AI合同起草及AI法律问答服务。通过智能问答、深度思考与联网检索,助您高效检索法律法规与司法判例,告别传统模板,实现合同一键起草与在线编辑,大幅提升法律事务处理效率。
- 459次使用
-
- TokenPony
- TokenPony是讯盟科技旗下的AI大模型聚合API平台。通过统一接口接入DeepSeek、Kimi、Qwen等主流模型,支持1024K超长上下文,实现零配置、免部署、极速响应与高性价比的AI应用开发,助力专业用户轻松构建智能服务。
- 471次使用
-
- 迅捷AIPPT
- 迅捷AIPPT是一款高效AI智能PPT生成软件,一键智能生成精美演示文稿。内置海量专业模板、多样风格,支持自定义大纲,助您轻松制作高质量PPT,大幅节省时间。
- 433次使用
查看更多
相关文章
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览