当前位置:首页 > 文章列表 > 文章 > python教程 > Pytorch中的Fivecrop

Pytorch中的Fivecrop

来源:dev.to 2025-02-06 13:09:56 0浏览 收藏

文章小白一枚,正在不断学习积累知识,现将学习到的知识记录一下,也是将我的所得分享给大家!而今天这篇文章《Pytorch中的Fivecrop》带大家来了解一下##content_title##,希望对大家的知识积累有所帮助,从而弥补自己的不足,助力实战开发!


给我买咖啡☕

*备忘录:

  • 我的帖子解释了牛津iiitpet()。

> fivecrop()可以将图像裁剪成5个部分(左上角,右上,左下,右下和中心),如下所示:

*备忘录:

    >初始化的第一个参数是大小(必需类型:int或tuple/list/list(int)或size()): *备忘录:
    • 是[高度,宽度]。
    • >必须是1个< = x。
    • 元组/列表必须是具有1或2个元素的1d。
    • 单个值(int或tuple/list(int))是指[size,size]。
    • 第一个参数是img(必需类型:pil图像或张量(int)): *备忘录:
  • 张量必须为2d或3d。
  • 不使用img =。
    • 建议根据v1或v2使用v2?我应该使用哪一个?
    from torchvision.datasets import OxfordIIITPet
    from torchvision.transforms.v2 import FiveCrop
    
    fivecrop = FiveCrop(size=100)
    
    fivecrop
    # FiveCrop(size=(100, 100))
    
    fivecrop.size
    # (100, 100)
    
    origin_data = OxfordIIITPet(
        root="data",
        transform=None
    )
    
    s500_394origin_data = OxfordIIITPet( # `s` is size.
        root="data",
        transform=FiveCrop(size=[500, 394])
    )
    
    s300_data = OxfordIIITPet(
        root="data",
        transform=FiveCrop(size=300)
    )
    
    s200_data = OxfordIIITPet(
        root="data",
        transform=FiveCrop(size=200)
    )
    
    s100_data = OxfordIIITPet(
        root="data",
        transform=FiveCrop(size=100)
    )
    
    s50_data = OxfordIIITPet(
        root="data",
        transform=FiveCrop(size=50)
    )
    
    s10_data = OxfordIIITPet(
        root="data",
        transform=FiveCrop(size=10)
    )
    
    s1_data = OxfordIIITPet(
        root="data",
        transform=FiveCrop(size=1)
    )
    
    s200_300_data = OxfordIIITPet(
        root="data",
        transform=FiveCrop(size=[200, 300])
    )
    
    s300_200_data = OxfordIIITPet(
        root="data",
        transform=FiveCrop(size=[300, 200])
    )
    
    import matplotlib.pyplot as plt
    
    def show_images1(fcims, main_title=None):
        plt.figure(figsize=[10, 5])
        plt.suptitle(t=main_title, y=0.8, fontsize=14)
        titles = ['Top-left', 'Top-right', 'Bottom-left',
                  'Bottom-right', 'Center']
        for i, fcim in zip(range(1, 6), fcims):
            plt.subplot(1, 5, i)
            plt.title(label=titles[i-1], fontsize=14)
            plt.imshow(X=fcim)
        plt.tight_layout()
        plt.show()
    
    plt.figure(figsize=(7, 9))
    plt.title(label="s500_394origin_data", fontsize=14)
    plt.imshow(X=origin_data[0][0])
    show_images1(fcims=s500_394origin_data[0][0], main_title="s500_394origin_data")
    show_images1(fcims=s300_data[0][0], main_title="s300_data")
    show_images1(fcims=s200_data[0][0], main_title="s200_data")
    show_images1(fcims=s100_data[0][0], main_title="s100_data")
    show_images1(fcims=s50_data[0][0], main_title="s50_data")
    show_images1(fcims=s10_data[0][0], main_title="s10_data")
    show_images1(fcims=s1_data[0][0], main_title="s1_data")
    show_images1(fcims=s200_300_data[0][0], main_title="s200_300_data")
    show_images1(fcims=s300_200_data[0][0], main_title="s300_200_data")
    
    # ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓
    def show_images2(im, main_title=None, s=None):
        plt.figure(figsize=[10, 5])
        plt.suptitle(t=main_title, y=0.8, fontsize=14)
        titles = ['Top-left', 'Top-right', 'Bottom-left',
                  'Bottom-right', 'Center']
        if not s:
            s = [im.size[1], im.size[0]] 
        fc = FiveCrop(size=s) # Here
        for i, fcim in zip(range(1, 6), fc(im)):
            plt.subplot(1, 5, i)
            plt.title(label=titles[i-1], fontsize=14)
            plt.imshow(X=fcim) # Here
        plt.tight_layout()
        plt.show()
    
    plt.figure(figsize=(7, 9))
    plt.title(label="s500_394origin_data", fontsize=14)
    plt.imshow(X=origin_data[0][0])
    show_images2(im=origin_data[0][0], main_title="s500_394origin_data")
    # show_images2(im=origin_data[0][0], main_title="s500_394origin_data",
    #              s=[500, 394])
    show_images2(im=origin_data[0][0], main_title="s300_data", s=300)
    show_images2(im=origin_data[0][0], main_title="s200_data", s=200)
    show_images2(im=origin_data[0][0], main_title="s100_data", s=100)
    show_images2(im=origin_data[0][0], main_title="s50_data", s=50)
    show_images2(im=origin_data[0][0], main_title="s10_data", s=10)
    show_images2(im=origin_data[0][0], main_title="s1_data", s=1)
    show_images2(im=origin_data[0][0], main_title="s200_300_data", s=[200, 300])
    show_images2(im=origin_data[0][0], main_title="s300_200_data", s=[300, 200])
    

image description

image description

image description

image description

image description

image description

image description

image description

image description

本篇关于《Pytorch中的Fivecrop》的介绍就到此结束啦,但是学无止境,想要了解学习更多关于文章的相关知识,请关注golang学习网公众号!

版本声明
本文转载于:dev.to 如有侵犯,请联系study_golang@163.com删除
Cirrus Logic第三季度营收5.557亿美元,产品需求强劲Cirrus Logic第三季度营收5.557亿美元,产品需求强劲
上一篇
Cirrus Logic第三季度营收5.557亿美元,产品需求强劲
将弹簧MVC应用程序转换为Mendix
下一篇
将弹簧MVC应用程序转换为Mendix
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 茅茅虫AIGC检测:精准识别AI生成内容,保障学术诚信
    茅茅虫AIGC检测
    茅茅虫AIGC检测,湖南茅茅虫科技有限公司倾力打造,运用NLP技术精准识别AI生成文本,提供论文、专著等学术文本的AIGC检测服务。支持多种格式,生成可视化报告,保障您的学术诚信和内容质量。
    93次使用
  • 赛林匹克平台:科技赛事聚合,赋能AI、算力、量子计算创新
    赛林匹克平台(Challympics)
    探索赛林匹克平台Challympics,一个聚焦人工智能、算力算法、量子计算等前沿技术的赛事聚合平台。连接产学研用,助力科技创新与产业升级。
    100次使用
  • SEO  笔格AIPPT:AI智能PPT制作,免费生成,高效演示
    笔格AIPPT
    SEO 笔格AIPPT是135编辑器推出的AI智能PPT制作平台,依托DeepSeek大模型,实现智能大纲生成、一键PPT生成、AI文字优化、图像生成等功能。免费试用,提升PPT制作效率,适用于商务演示、教育培训等多种场景。
    105次使用
  • 稿定PPT:在线AI演示设计,高效PPT制作工具
    稿定PPT
    告别PPT制作难题!稿定PPT提供海量模板、AI智能生成、在线协作,助您轻松制作专业演示文稿。职场办公、教育学习、企业服务全覆盖,降本增效,释放创意!
    99次使用
  • Suno苏诺中文版:AI音乐创作平台,人人都是音乐家
    Suno苏诺中文版
    探索Suno苏诺中文版,一款颠覆传统音乐创作的AI平台。无需专业技能,轻松创作个性化音乐。智能词曲生成、风格迁移、海量音效,释放您的音乐灵感!
    98次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码