用实用的python示例来掌握K-Nearest邻居(K-NN)
各位小伙伴们,大家好呀!看看今天我又给各位带来了什么文章?本文标题是《用实用的python示例来掌握K-Nearest邻居(K-NN)》,很明显是关于文章的文章哈哈哈,其中内容主要会涉及到等等,如果能帮到你,觉得很不错的话,欢迎各位多多点评和分享!
K-近邻算法(K-NN)详解及Python实现
想象一下,您初来乍到一个新城市,想找一家不错的餐厅。您不熟悉当地情况,于是向三位当地人征求意见。
• 两位推荐餐厅A。 • 一位推荐餐厅B。
由于大多数人推荐餐厅A,您决定去那里用餐。
这个简单的决策过程,正是机器学习中K-近邻(K-NN)算法的工作原理!本文将深入探讨K-NN算法,了解其机制,并通过一个Python实例进行演示。
什么是K-近邻算法(K-NN)?
K-NN算法是一种监督学习算法,用于分类和回归。它基于这样一个假设:相似的样本更可能属于同一类别。算法通过计算新数据点与现有数据点之间的距离,找到与其最近的K个邻居,并根据这些邻居的类别来预测新数据点的类别。
K-NN算法工作流程:
-
选择邻居数量(K): 这是一个超参数,需要根据数据集进行调整。
-
计算距离: 计算新数据点与数据集所有其他数据点之间的距离(常用欧几里得距离或曼哈顿距离)。
-
选择K个最近邻: 选择距离新数据点最近的K个数据点。
-
多数投票: 根据这K个最近邻的类别,通过多数投票确定新数据点的类别(对于分类问题)。 对于回归问题,则取K个最近邻的平均值作为预测结果。
Python实现K-NN
我们将使用一个数据集来预测一个人是否会根据年龄和预计收入购买产品。
步骤1:导入必要的库
y_pred = knn.predict(x_test) # 评估性能 accuracy = accuracy_score(y_test, y_pred) conf_matrix = confusion_matrix(y_test, y_pred) report = classification_report(y_test, y_pred) print(f"Accuracy: {accuracy:.2f}") print("Confusion Matrix:\n", conf_matrix) print("Classification Report:\n", report)
关键洞察:
-
选择合适的K值: 过小的K值容易过拟合,过大的K值容易欠拟合。可以使用交叉验证来确定最佳K值。
-
特征缩放的重要性: K-NN依赖于距离计算,特征缩放确保所有特征对结果的贡献相同。
-
适用于小型数据集: K-NN在大型数据集上的计算成本较高。
K-近邻算法是一种简单而有效的分类算法,适用于各种分类问题。 但在应用于大型数据集时,需要考虑其计算效率。
您想了解K-NN在图像分类或时间序列预测中的应用吗?欢迎在评论区留言讨论!
以上就是《用实用的python示例来掌握K-Nearest邻居(K-NN)》的详细内容,更多关于的资料请关注golang学习网公众号!

- 上一篇
- 兆易创新“延时测试电路和探针结构”专利获授权

- 下一篇
- Meta对VR与智能眼镜的总投资将突破1,000亿美元
-
- 文章 · python教程 | 14分钟前 |
- Python音频处理:pydub实用教程详解
- 166浏览 收藏
-
- 文章 · python教程 | 26分钟前 |
- Python单例哨兵模式实现方法
- 213浏览 收藏
-
- 文章 · python教程 | 32分钟前 |
- FMU变量数量解析与FMI规范分析
- 203浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python移动平均技巧详解
- 303浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python多级索引使用技巧详解
- 501浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python星号参数打包位置参数详解
- 452浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python操作Parquet文件:pyarrow使用教程
- 500浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- PyCharm代码放大技巧及界面缩放方法
- 321浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- Python代码审计:AST遍历技巧解析
- 209浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- Python正则匹配URL完整模式解析
- 257浏览 收藏
-
- 文章 · python教程 | 3小时前 |
- Python模块变量导入技巧
- 151浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 499次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- PandaWiki开源知识库
- PandaWiki是一款AI大模型驱动的开源知识库搭建系统,助您快速构建产品/技术文档、FAQ、博客。提供AI创作、问答、搜索能力,支持富文本编辑、多格式导出,并可轻松集成与多来源内容导入。
- 213次使用
-
- AI Mermaid流程图
- SEO AI Mermaid 流程图工具:基于 Mermaid 语法,AI 辅助,自然语言生成流程图,提升可视化创作效率,适用于开发者、产品经理、教育工作者。
- 1007次使用
-
- 搜获客【笔记生成器】
- 搜获客笔记生成器,国内首个聚焦小红书医美垂类的AI文案工具。1500万爆款文案库,行业专属算法,助您高效创作合规、引流的医美笔记,提升运营效率,引爆小红书流量!
- 1034次使用
-
- iTerms
- iTerms是一款专业的一站式法律AI工作台,提供AI合同审查、AI合同起草及AI法律问答服务。通过智能问答、深度思考与联网检索,助您高效检索法律法规与司法判例,告别传统模板,实现合同一键起草与在线编辑,大幅提升法律事务处理效率。
- 1041次使用
-
- TokenPony
- TokenPony是讯盟科技旗下的AI大模型聚合API平台。通过统一接口接入DeepSeek、Kimi、Qwen等主流模型,支持1024K超长上下文,实现零配置、免部署、极速响应与高性价比的AI应用开发,助力专业用户轻松构建智能服务。
- 1111次使用
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览