当前位置:首页 > 文章列表 > 文章 > python教程 > 我要求DeepSeek编码我的python,这是没有人制作的

我要求DeepSeek编码我的python,这是没有人制作的

来源:dev.to 2025-02-01 09:45:44 0浏览 收藏
推广推荐
免费电影APP ➜
支持 PC / 移动端,安全直达

IT行业相对于一般传统行业,发展更新速度更快,一旦停止了学习,很快就会被行业所淘汰。所以我们需要踏踏实实的不断学习,精进自己的技术,尤其是初学者。今天golang学习网给大家整理了《我要求DeepSeek编码我的python,这是没有人制作的》,聊聊,我们一起来看看吧!

高级python脚本:带有实时可视化的ai驱动网络异常检测器

此脚本组合:

使用scapy的实时网络流量分析。

使用scikit-learn。

基于机器学习的异常检测。 使用matplotlib和plotly。

使用大熊猫和电子邮件库的自动报告。>

脚本监视网络流量,检测异常(例如,不寻常的流量模式),并生成实时可视化和电子邮件警报。

import time
import pandas as pd
import numpy as np
from scapy.all import sniff, IP, TCP
from sklearn.ensemble import IsolationForest
import matplotlib.pyplot as plt
import plotly.express as px
import smtplib
from email.mime.text import MIMEText
from email.mime.multipart import MIMEMultipart
from threading import Thread

# Global variables
network_data = []
anomalies = []
model = IsolationForest(contamination=0.01)  # Anomaly detection model

# Email configuration
EMAIL_HOST = 'smtp.gmail.com'
EMAIL_PORT = 587
EMAIL_USER = 'your_email@gmail.com'
EMAIL_PASSWORD = 'your_password'
ALERT_EMAIL = 'recipient_email@example.com'

def capture_traffic(packet):
    """
    Capture network traffic and extract features.
    """
    if IP in packet:
        src_ip = packet[IP].src
        dst_ip = packet[IP].dst
        protocol = packet[IP].proto
        length = len(packet)
        timestamp = time.time()

        # Append to network data
        network_data.append([timestamp, src_ip, dst_ip, protocol, length])

def detect_anomalies():
    """
    Detect anomalies in network traffic using Isolation Forest.
    """
    global network_data, anomalies
    while True:
        if len(network_data) > 100:  # Wait for enough data
            df = pd.DataFrame(network_data, columns=['timestamp', 'src_ip', 'dst_ip', 'protocol', 'length'])
            X = df[['protocol', 'length']].values

            # Train the model and predict anomalies
            model.fit(X)
            preds = model.predict(X)
            df['anomaly'] = preds

            # Extract anomalies
            anomalies = df[df['anomaly'] == -1]
            if not anomalies.empty:
                print("Anomalies detected:")
                print(anomalies)
                send_alert_email(anomalies)
                visualize_anomalies(anomalies)

            # Clear old data
            network_data = network_data[-100:]  # Keep last 100 entries
        time.sleep(10)  # Check for anomalies every 10 seconds

def visualize_anomalies(anomalies):
    """
    Visualize anomalies using Plotly.
    """
    fig = px.scatter(anomalies, x='timestamp', y='length', color='protocol',
                     title='Network Anomalies Detected')
    fig.show()

def send_alert_email(anomalies):
    """
    Send an email alert with detected anomalies.
    """
    msg = MIMEMultipart()
    msg['From'] = EMAIL_USER
    msg['To'] = ALERT_EMAIL
    msg['Subject'] = 'Network Anomaly Alert'

    body = "The following network anomalies were detected:\n\n"
    body += anomalies.to_string()
    msg.attach(MIMEText(body, 'plain'))

    try:
        server = smtplib.SMTP(EMAIL_HOST, EMAIL_PORT)
        server.starttls()
        server.login(EMAIL_USER, EMAIL_PASSWORD)
        server.sendmail(EMAIL_USER, ALERT_EMAIL, msg.as_string())
        server.quit()
        print("Alert email sent.")
    except Exception as e:
        print(f"Failed to send email: {e}")

def start_capture():
    """
    Start capturing network traffic.
    """
    print("Starting network traffic capture...")
    sniff(prn=capture_traffic, store=False)

if __name__ == "__main__":
    # Start traffic capture in a separate thread
    capture_thread = Thread(target=start_capture)
    capture_thread.daemon = True
    capture_thread.start()

    # Start anomaly detection
    detect_anomalies()

它的工作原理

网络流量捕获:


>脚本使用scapy捕获实时网络流量并提取源ip,目标ip,协议和数据包长度等功能。

>异常检测:


>它使用scikit-learn的隔离森林算法来检测网络流量中的异常模式。

实时可视化:

使用plotly实时可视化检测到的异常。

>

电子邮件警报:

如果检测到异常,则脚本将发送带有详细信息的电子邮件警报。

多线程:

流量捕获和异常检测在单独的线程中运行以提高效率。>

文中关于的知识介绍,希望对你的学习有所帮助!若是受益匪浅,那就动动鼠标收藏这篇《我要求DeepSeek编码我的python,这是没有人制作的》文章吧,也可关注golang学习网公众号了解相关技术文章。

版本声明
本文转载于:dev.to 如有侵犯,请联系study_golang@163.com删除
我尝试使用Tailwind CSS构建组件库!我尝试使用Tailwind CSS构建组件库!
上一篇
我尝试使用Tailwind CSS构建组件库!
怎么提高电脑网速
下一篇
怎么提高电脑网速
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    543次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    516次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    500次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    485次学习
查看更多
AI推荐
  • ChatExcel酷表:告别Excel难题,北大团队AI助手助您轻松处理数据
    ChatExcel酷表
    ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
    3211次使用
  • Any绘本:开源免费AI绘本创作工具深度解析
    Any绘本
    探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
    3425次使用
  • 可赞AI:AI驱动办公可视化智能工具,一键高效生成文档图表脑图
    可赞AI
    可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
    3454次使用
  • 星月写作:AI网文创作神器,助力爆款小说速成
    星月写作
    星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
    4563次使用
  • MagicLight.ai:叙事驱动AI动画视频创作平台 | 高效生成专业级故事动画
    MagicLight
    MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
    3832次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码