PyTorch 中的 CocoCaptions (3)
来源:dev.to
2025-01-24 20:24:27
0浏览
收藏
各位小伙伴们,大家好呀!看看今天我又给各位带来了什么文章?本文标题是《PyTorch 中的 CocoCaptions (3)》,很明显是关于文章的文章哈哈哈,其中内容主要会涉及到等等,如果能帮到你,觉得很不错的话,欢迎各位多多点评和分享!
请我喝杯咖啡☕
*备忘录:
- 我的帖子解释了cococaptions()使用带有captions_train2014.json、instances_train2014.json和person_keypoints_train2014.json的train2014、带有captions_val2014.json、instances_val2014.json和person_keypoints_val2014.json的val2014以及带有image_info_test2014.json的test2017, image_info_test2015.json 和 image_info_test-dev2015.json。
- 我的帖子解释了cococaptions()使用train2017与captions_train2017.json,instances_train2017.json和person_keypoints_train2017.json,val2017与captions_val2017.json,instances_val2017.json和person_keypoints_val2017.json和test2017与image_info_test2017.json和image_info_test-dev2017.json.
- 我的帖子解释了cocodetection()使用带有captions_train2014.json、instances_train2014.json和person_keypoints_train2014.json的train2014、带有captions_val2014.json、instances_val2014.json和person_keypoints_val2014.json的val2014以及带有image_info_test2014.json的test2017, image_info_test2015.json 和 image_info_test-dev2015.json。
- 我的帖子解释了cocodetection()使用train2017与captions_train2017.json,instances_train2017.json和person_keypoints_train2017.json,val2017与captions_val2017.json,instances_val2017.json和person_keypoints_val2017.json和test2017与image_info_test2017.json和image_info_test-dev2017.json.
- 我的帖子解释了cocodetection()使用train2017与stuff_train2017.json,val2017与stuff_val2017.json,stuff_train2017_pixelmaps与stuff_train2017.json,stuff_val2017_pixelmaps与stuff_val2017.json,panoptic_train2017与panoptic_train2017.json,panoptic_val2017与panoptic_val2017.json 和 unlabeled2017 以及 image_info_unlabeled2017.json。
- 我的帖子解释了 ms coco。
cococaptions() 可以使用 ms coco 数据集,如下所示。 *这是针对带有 stuff_train2017.json 的 train2017、带有 stuff_val2017.json 的 val2017、带有 stuff_train2017.json 的 stuff_train2017_pixelmaps、带有 stuff_val2017.json 的 stuff_val2017_pixelmaps、带有 panoptic_train2017.json 的 panoptic_train2017、带有 panoptic_train2017.json 的 panoptic_val2017 panoptic_val2017.json 和 unlabeled2017 以及 image_info_unlabeled2017.json:
from torchvision.datasets import CocoCaptions stf_train2017_data = CocoCaptions( root="data/coco/imgs/train2017", annFile="data/coco/anns/stuff_trainval2017/stuff_train2017.json" ) stf_val2017_data = CocoCaptions( root="data/coco/imgs/val2017", annFile="data/coco/anns/stuff_trainval2017/stuff_val2017.json" ) len(stf_train2017_data), len(stf_val2017_data) # (118287, 5000) pms_stf_train2017_data = CocoCaptions( root="data/coco/anns/stuff_trainval2017/stuff_train2017_pixelmaps", annFile="data/coco/anns/stuff_trainval2017/stuff_train2017.json" ) pms_stf_val2017_data = CocoCaptions( root="data/coco/anns/stuff_trainval2017/stuff_val2017_pixelmaps", annFile="data/coco/anns/stuff_trainval2017/stuff_val2017.json" ) len(pms_stf_train2017_data), len(pms_stf_val2017_data) # (118287, 5000) # pan_train2017_data = CocoCaptions( # root="data/coco/anns/panoptic_trainval2017/panoptic_train2017", # annFile="data/coco/anns/panoptic_trainval2017/panoptic_train2017.json" # ) # Error # pan_val2017_data = CocoCaptions( # root="data/coco/anns/panoptic_trainval2017/panoptic_val2017", # annFile="data/coco/anns/panoptic_trainval2017/panoptic_val2017.json" # ) # Error unlabeled2017_data = CocoCaptions( root="data/coco/imgs/unlabeled2017", annFile="data/coco/anns/unlabeled2017/image_info_unlabeled2017.json" ) len(unlabeled2017_data) # 123403 stf_train2017_data[2] # Error stf_train2017_data[47] # Error stf_train2017_data[64] # Error stf_val2017_data[2] # Error stf_val2017_data[47] # Error stf_val2017_data[64] # Error pms_stf_train2017_data[2] # Error pms_stf_train2017_data[47] # Error pms_stf_train2017_data[64] # Error pms_stf_val2017_data[2] # Error pms_stf_val2017_data[47] # Error pms_stf_val2017_data[64] # Error unlabeled2017_data[2] # (<PIL.Image.Image image mode=RGB size=640x427>, []) unlabeled2017_data[47] # (<PIL.Image.Image image mode=RGB size=428x640>, []) unlabeled2017_data[64] # (<PIL.Image.Image image mode=RGB size=640x480>, []) import matplotlib.pyplot as plt def show_images(data, ims, main_title=None): file = data.root.split('/')[-1] fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(14, 8)) fig.suptitle(t=main_title, y=0.9, fontsize=14) for i, axis in zip(ims, axes.ravel()): if not data[i][1]: im, _ = data[i] axis.imshow(X=im) fig.tight_layout() plt.show() ims = (2, 47, 64) show_images(data=unlabeled2017_data, ims=ims, main_title="unlabeled2017_data")
本篇关于《PyTorch 中的 CocoCaptions (3)》的介绍就到此结束啦,但是学无止境,想要了解学习更多关于文章的相关知识,请关注golang学习网公众号!
版本声明
本文转载于:dev.to 如有侵犯,请联系study_golang@163.com删除

- 上一篇
- 北京大学深圳研究生院莫凡洋/袁粒与合作者开发机器学习手性分子光谱预测模型

- 下一篇
- 【成功】中国首款高压抗辐射碳化硅功率器件研制成功,通过太空验证;北理工团队在变刚度超材料研究中取得重要进展;中国科学院深度学习模型的原位可视分析研究取得进展
查看更多
最新文章
-
- 文章 · python教程 | 3小时前 |
- PyCharm怎么设置成英文?超简单教程带你切换英文界面
- 379浏览 收藏
-
- 文章 · python教程 | 3小时前 |
- Python中的len()函数是啥意思?len函数超详细解读
- 337浏览 收藏
-
- 文章 · python教程 | 3小时前 |
- 手把手教你用Flask-Login轻松实现用户登录系统
- 256浏览 收藏
-
- 文章 · python教程 | 3小时前 |
- Python里chr函数干啥用的?ASCII码转字符教程
- 479浏览 收藏
-
- 文章 · python教程 | 3小时前 |
- Pythoninput()函数怎么用?手把手教你搞定输入技巧
- 256浏览 收藏
-
- 文章 · python教程 | 3小时前 |
- Python这么强?这些逆天应用场景你绝对想不到!
- 248浏览 收藏
-
- 文章 · python教程 | 4小时前 |
- Python手把手教你检测文件是否存在(附代码)
- 498浏览 收藏
-
- 文章 · python教程 | 4小时前 |
- PyCharm图形界面没了?手把手教你快速设置显示
- 413浏览 收藏
-
- 文章 · python教程 | 4小时前 |
- 学Python能干啥?开发、爬虫、数据分析全都行!
- 145浏览 收藏
查看更多
课程推荐
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
查看更多
AI推荐
-
- 茅茅虫AIGC检测
- 茅茅虫AIGC检测,湖南茅茅虫科技有限公司倾力打造,运用NLP技术精准识别AI生成文本,提供论文、专著等学术文本的AIGC检测服务。支持多种格式,生成可视化报告,保障您的学术诚信和内容质量。
- 93次使用
-
- 赛林匹克平台(Challympics)
- 探索赛林匹克平台Challympics,一个聚焦人工智能、算力算法、量子计算等前沿技术的赛事聚合平台。连接产学研用,助力科技创新与产业升级。
- 100次使用
-
- 笔格AIPPT
- SEO 笔格AIPPT是135编辑器推出的AI智能PPT制作平台,依托DeepSeek大模型,实现智能大纲生成、一键PPT生成、AI文字优化、图像生成等功能。免费试用,提升PPT制作效率,适用于商务演示、教育培训等多种场景。
- 105次使用
-
- 稿定PPT
- 告别PPT制作难题!稿定PPT提供海量模板、AI智能生成、在线协作,助您轻松制作专业演示文稿。职场办公、教育学习、企业服务全覆盖,降本增效,释放创意!
- 99次使用
-
- Suno苏诺中文版
- 探索Suno苏诺中文版,一款颠覆传统音乐创作的AI平台。无需专业技能,轻松创作个性化音乐。智能词曲生成、风格迁移、海量音效,释放您的音乐灵感!
- 98次使用
查看更多
相关文章
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览