PyTorch 中的 CocoCaptions (3)
来源:dev.to
2025-01-24 20:24:27
0浏览
收藏
各位小伙伴们,大家好呀!看看今天我又给各位带来了什么文章?本文标题是《PyTorch 中的 CocoCaptions (3)》,很明显是关于文章的文章哈哈哈,其中内容主要会涉及到等等,如果能帮到你,觉得很不错的话,欢迎各位多多点评和分享!
请我喝杯咖啡☕
*备忘录:
- 我的帖子解释了cococaptions()使用带有captions_train2014.json、instances_train2014.json和person_keypoints_train2014.json的train2014、带有captions_val2014.json、instances_val2014.json和person_keypoints_val2014.json的val2014以及带有image_info_test2014.json的test2017, image_info_test2015.json 和 image_info_test-dev2015.json。
- 我的帖子解释了cococaptions()使用train2017与captions_train2017.json,instances_train2017.json和person_keypoints_train2017.json,val2017与captions_val2017.json,instances_val2017.json和person_keypoints_val2017.json和test2017与image_info_test2017.json和image_info_test-dev2017.json.
- 我的帖子解释了cocodetection()使用带有captions_train2014.json、instances_train2014.json和person_keypoints_train2014.json的train2014、带有captions_val2014.json、instances_val2014.json和person_keypoints_val2014.json的val2014以及带有image_info_test2014.json的test2017, image_info_test2015.json 和 image_info_test-dev2015.json。
- 我的帖子解释了cocodetection()使用train2017与captions_train2017.json,instances_train2017.json和person_keypoints_train2017.json,val2017与captions_val2017.json,instances_val2017.json和person_keypoints_val2017.json和test2017与image_info_test2017.json和image_info_test-dev2017.json.
- 我的帖子解释了cocodetection()使用train2017与stuff_train2017.json,val2017与stuff_val2017.json,stuff_train2017_pixelmaps与stuff_train2017.json,stuff_val2017_pixelmaps与stuff_val2017.json,panoptic_train2017与panoptic_train2017.json,panoptic_val2017与panoptic_val2017.json 和 unlabeled2017 以及 image_info_unlabeled2017.json。
- 我的帖子解释了 ms coco。
cococaptions() 可以使用 ms coco 数据集,如下所示。 *这是针对带有 stuff_train2017.json 的 train2017、带有 stuff_val2017.json 的 val2017、带有 stuff_train2017.json 的 stuff_train2017_pixelmaps、带有 stuff_val2017.json 的 stuff_val2017_pixelmaps、带有 panoptic_train2017.json 的 panoptic_train2017、带有 panoptic_train2017.json 的 panoptic_val2017 panoptic_val2017.json 和 unlabeled2017 以及 image_info_unlabeled2017.json:
from torchvision.datasets import CocoCaptions
stf_train2017_data = CocoCaptions(
root="data/coco/imgs/train2017",
annFile="data/coco/anns/stuff_trainval2017/stuff_train2017.json"
)
stf_val2017_data = CocoCaptions(
root="data/coco/imgs/val2017",
annFile="data/coco/anns/stuff_trainval2017/stuff_val2017.json"
)
len(stf_train2017_data), len(stf_val2017_data)
# (118287, 5000)
pms_stf_train2017_data = CocoCaptions(
root="data/coco/anns/stuff_trainval2017/stuff_train2017_pixelmaps",
annFile="data/coco/anns/stuff_trainval2017/stuff_train2017.json"
)
pms_stf_val2017_data = CocoCaptions(
root="data/coco/anns/stuff_trainval2017/stuff_val2017_pixelmaps",
annFile="data/coco/anns/stuff_trainval2017/stuff_val2017.json"
)
len(pms_stf_train2017_data), len(pms_stf_val2017_data)
# (118287, 5000)
# pan_train2017_data = CocoCaptions(
# root="data/coco/anns/panoptic_trainval2017/panoptic_train2017",
# annFile="data/coco/anns/panoptic_trainval2017/panoptic_train2017.json"
# ) # Error
# pan_val2017_data = CocoCaptions(
# root="data/coco/anns/panoptic_trainval2017/panoptic_val2017",
# annFile="data/coco/anns/panoptic_trainval2017/panoptic_val2017.json"
# ) # Error
unlabeled2017_data = CocoCaptions(
root="data/coco/imgs/unlabeled2017",
annFile="data/coco/anns/unlabeled2017/image_info_unlabeled2017.json"
)
len(unlabeled2017_data)
# 123403
stf_train2017_data[2] # Error
stf_train2017_data[47] # Error
stf_train2017_data[64] # Error
stf_val2017_data[2] # Error
stf_val2017_data[47] # Error
stf_val2017_data[64] # Error
pms_stf_train2017_data[2] # Error
pms_stf_train2017_data[47] # Error
pms_stf_train2017_data[64] # Error
pms_stf_val2017_data[2] # Error
pms_stf_val2017_data[47] # Error
pms_stf_val2017_data[64] # Error
unlabeled2017_data[2]
# (<PIL.Image.Image image mode=RGB size=640x427>, [])
unlabeled2017_data[47]
# (<PIL.Image.Image image mode=RGB size=428x640>, [])
unlabeled2017_data[64]
# (<PIL.Image.Image image mode=RGB size=640x480>, [])
import matplotlib.pyplot as plt
def show_images(data, ims, main_title=None):
file = data.root.split('/')[-1]
fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(14, 8))
fig.suptitle(t=main_title, y=0.9, fontsize=14)
for i, axis in zip(ims, axes.ravel()):
if not data[i][1]:
im, _ = data[i]
axis.imshow(X=im)
fig.tight_layout()
plt.show()
ims = (2, 47, 64)
show_images(data=unlabeled2017_data, ims=ims,
main_title="unlabeled2017_data")

本篇关于《PyTorch 中的 CocoCaptions (3)》的介绍就到此结束啦,但是学无止境,想要了解学习更多关于文章的相关知识,请关注golang学习网公众号!
版本声明
本文转载于:dev.to 如有侵犯,请联系study_golang@163.com删除
北京大学深圳研究生院莫凡洋/袁粒与合作者开发机器学习手性分子光谱预测模型
- 上一篇
- 北京大学深圳研究生院莫凡洋/袁粒与合作者开发机器学习手性分子光谱预测模型
- 下一篇
- 【成功】中国首款高压抗辐射碳化硅功率器件研制成功,通过太空验证;北理工团队在变刚度超材料研究中取得重要进展;中国科学院深度学习模型的原位可视分析研究取得进展
查看更多
最新文章
-
- 文章 · python教程 | 18分钟前 |
- Python搭建数据监控与报警系统教程
- 371浏览 收藏
-
- 文章 · python教程 | 50分钟前 |
- Python批量合并Excel表格方法
- 170浏览 收藏
-
- 文章 · python教程 | 56分钟前 |
- Python全局二值化方法全解析
- 438浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python错误捕获技巧分享
- 253浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python多线程join使用技巧详解
- 380浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- 电话号码字母组合:键重复与回溯算法解析
- 471浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Pythonxlutils库用途及使用方法
- 265浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- 原地去重算法原理与实现解析
- 348浏览 收藏
-
- 文章 · python教程 | 1小时前 | Scrapy 请求参数 response.follow scrapy.Request FormRequest
- Scrapy.Request方法详解与使用技巧
- 497浏览 收藏
-
- 文章 · python教程 | 2小时前 | Python 命令行 环境变量 python--version 安装验证
- 确认电脑Python是否安装成功的方法
- 422浏览 收藏
查看更多
课程推荐
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 500次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 485次学习
查看更多
AI推荐
-
- ChatExcel酷表
- ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
- 3210次使用
-
- Any绘本
- 探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
- 3424次使用
-
- 可赞AI
- 可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
- 3453次使用
-
- 星月写作
- 星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
- 4561次使用
-
- MagicLight
- MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
- 3831次使用
查看更多
相关文章
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览

