PyTorch 中的 FiveCrop
来源:dev.to
2025-01-24 11:34:03
0浏览
收藏
你在学习文章相关的知识吗?本文《PyTorch 中的 FiveCrop》,主要介绍的内容就涉及到,如果你想提升自己的开发能力,就不要错过这篇文章,大家要知道编程理论基础和实战操作都是不可或缺的哦!
请我喝杯咖啡☕
*备忘录:
- 我的帖子解释了 oxfordiiitpet()。
fivecrop() 可以将图像裁剪为 5 个部分(左上、右上、左下、右下和中心),如下所示:
*备忘录:
- 初始化的第一个参数是 size(required-type:int or tuple/list(int) or size()):
*备注:
- 它是[高度,宽度]。
- 必须是 1 <= x。
- 元组/列表必须是具有 1 或 2 个元素的一维。
- 单个值(int 或 tuple/list(int) 表示 [size, size]。
- 第一个参数是img(必需类型:pil图像或张量(int)):
*备注:
- 张量必须是一个或多个元素的 2d 或 3d。
- 不要使用img=。
- v2建议按照v1还是v2使用?我应该使用哪一个?
from torchvision.datasets import OxfordIIITPet from torchvision.transforms.v2 import FiveCrop fivecrop = FiveCrop(size=100) fivecrop # FiveCrop(size=(100, 100)) fivecrop.size # (100, 100) origin_data = OxfordIIITPet( root="data", transform=None ) p500p394origin_data = OxfordIIITPet( root="data", transform=FiveCrop(size=[500, 394]) # transform=FiveCrop(size=[600]) # transform=FiveCrop(size=[600, 600]) ) p300_data = OxfordIIITPet( root="data", transform=FiveCrop(size=300) ) p200_data = OxfordIIITPet( root="data", transform=FiveCrop(size=200) ) p100_data = OxfordIIITPet( root="data", transform=FiveCrop(size=100) ) p50_data = OxfordIIITPet( root="data", transform=FiveCrop(size=50) ) p10_data = OxfordIIITPet( root="data", transform=FiveCrop(size=10) ) p200p300_data = OxfordIIITPet( root="data", transform=FiveCrop(size=[200, 300]) ) p300p200_data = OxfordIIITPet( root="data", transform=FiveCrop(size=[300, 200]) ) import matplotlib.pyplot as plt def show_images1(fcims, main_title=None): plt.figure(figsize=(10, 5)) plt.suptitle(t=main_title, y=0.8, fontsize=14) titles = ['Top-left', 'Top-right', 'bottom-left', 'bottom-right', 'center'] for i, fcim in zip(range(1, 6), fcims): plt.subplot(1, 5, i) plt.title(label=titles[i-1], fontsize=14) plt.imshow(X=fcim) plt.tight_layout() plt.show() plt.figure(figsize=(7, 9)) plt.title(label="Origin_data", fontsize=14) plt.imshow(X=origin_data[0][0]) show_images1(fcims=p500p394origin_data[0][0], main_title="p500p394origin_data") show_images1(fcims=p300_data[0][0], main_title="p300_data") show_images1(fcims=p200_data[0][0], main_title="p200_data") show_images1(fcims=p100_data[0][0], main_title="p100_data") show_images1(fcims=p50_data[0][0], main_title="p50_data") show_images1(fcims=p10_data[0][0], main_title="p10_data") show_images1(fcims=p200p300_data[0][0], main_title="p200p300_data") show_images1(fcims=p300p200_data[0][0], main_title="p300p200_data") # ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓ def show_images2(im, main_title=None, s=None): plt.figure(figsize=(10, 5)) plt.suptitle(t=main_title, y=0.8, fontsize=14) titles = ['Top-left', 'Top-right', 'bottom-left', 'bottom-right', 'center'] if not s: s = [im.size[1], im.size[0]] fc = FiveCrop(size=s) # Here for i, fcim in zip(range(1, 6), fc(im)): plt.subplot(1, 5, i) plt.title(label=titles[i-1], fontsize=14) plt.imshow(X=fcim) # Here plt.tight_layout() plt.show() plt.figure(figsize=(7, 9)) plt.title(label="Origin_data", fontsize=14) plt.imshow(X=origin_data[0][0]) show_images2(im=origin_data[0][0], main_title="p500p394origin_data") # show_images2(im=origin_data[0][0], main_title="p500p394origin_data", # s=[500, 394]) show_images2(im=origin_data[0][0], main_title="p300_data", s=300) show_images2(im=origin_data[0][0], main_title="p200_data", s=200) show_images2(im=origin_data[0][0], main_title="p100_data", s=100) show_images2(im=origin_data[0][0], main_title="p50_data", s=50) show_images2(im=origin_data[0][0], main_title="p10_data", s=10) show_images2(im=origin_data[0][0], main_title="p200p300_data", s=[200, 300]) show_images2(im=origin_data[0][0], main_title="p300p200_data", s=[300, 200])
今天带大家了解了的相关知识,希望对你有所帮助;关于文章的技术知识我们会一点点深入介绍,欢迎大家关注golang学习网公众号,一起学习编程~
版本声明
本文转载于:dev.to 如有侵犯,请联系study_golang@163.com删除

- 上一篇
- JavaScript 数组:地图

- 下一篇
- 地平线、理想钱高管联手创立机器人公司,获近亿元种子轮融资
查看更多
最新文章
-
- 文章 · python教程 | 39分钟前 | Python 函数注释 代码可读性 类型检查 Docstrings
- Python函数注释写法详解
- 420浏览 收藏
-
- 文章 · python教程 | 46分钟前 |
- PythonTurtlePong碰撞优化技巧
- 485浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python制作GUI图表教程:Pygal可视化指南
- 110浏览 收藏
-
- 文章 · python教程 | 1小时前 | Python 数据库 模型 orm sqlalchemy
- PythonORM教程:SQLAlchemy使用全解析
- 405浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Bitbucket私仓变公仓教程分享
- 428浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python发邮件教程:smtplib使用全解析
- 486浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python中chr函数的作用及用法详解
- 241浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- PyCharm安装教程手把手详细步骤解析
- 404浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python操作PPT教程:python-pptx使用详解
- 116浏览 收藏
-
- 文章 · python教程 | 2小时前 | 协程 异步编程 asyncio 事件循环 async/await
- Python异步编程:asyncio全面解析
- 420浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- Pydantic参数验证无需调用函数
- 382浏览 收藏
查看更多
课程推荐
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 511次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 498次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
查看更多
AI推荐
-
- 千音漫语
- 千音漫语,北京熠声科技倾力打造的智能声音创作助手,提供AI配音、音视频翻译、语音识别、声音克隆等强大功能,助力有声书制作、视频创作、教育培训等领域,官网:https://qianyin123.com
- 192次使用
-
- MiniWork
- MiniWork是一款智能高效的AI工具平台,专为提升工作与学习效率而设计。整合文本处理、图像生成、营销策划及运营管理等多元AI工具,提供精准智能解决方案,让复杂工作简单高效。
- 193次使用
-
- NoCode
- NoCode (nocode.cn)是领先的无代码开发平台,通过拖放、AI对话等简单操作,助您快速创建各类应用、网站与管理系统。无需编程知识,轻松实现个人生活、商业经营、企业管理多场景需求,大幅降低开发门槛,高效低成本。
- 191次使用
-
- 达医智影
- 达医智影,阿里巴巴达摩院医疗AI创新力作。全球率先利用平扫CT实现“一扫多筛”,仅一次CT扫描即可高效识别多种癌症、急症及慢病,为疾病早期发现提供智能、精准的AI影像早筛解决方案。
- 198次使用
-
- 智慧芽Eureka
- 智慧芽Eureka,专为技术创新打造的AI Agent平台。深度理解专利、研发、生物医药、材料、科创等复杂场景,通过专家级AI Agent精准执行任务,智能化工作流解放70%生产力,让您专注核心创新。
- 213次使用
查看更多
相关文章
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览