当前位置:首页 > 文章列表 > 文章 > python教程 > PyTorch 中的 FiveCrop

PyTorch 中的 FiveCrop

来源:dev.to 2025-01-24 11:34:03 0浏览 收藏

你在学习文章相关的知识吗?本文《PyTorch 中的 FiveCrop》,主要介绍的内容就涉及到,如果你想提升自己的开发能力,就不要错过这篇文章,大家要知道编程理论基础和实战操作都是不可或缺的哦!

请我喝杯咖啡☕

*备忘录:

  • 我的帖子解释了 oxfordiiitpet()。

fivecrop() 可以将图像裁剪为 5 个部分(左上、右上、左下、右下和中心),如下所示:

*备忘录:

  • 初始化的第一个参数是 size(required-type:int or tuple/list(int) or size()): *备注:
    • 它是[高度,宽度]。
    • 必须是 1 <= x。
    • 元组/列表必须是具有 1 或 2 个元素的一维。
    • 单个值(int 或 tuple/list(int) 表示 [size, size]。
  • 第一个参数是img(必需类型:pil图像或张量(int)): *备注:
    • 张量必须是一个或多个元素的 2d 或 3d。
    • 不要使用img=。
  • v2建议按照v1还是v2使用?我应该使用哪一个?
from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import FiveCrop

fivecrop = FiveCrop(size=100)

fivecrop
# FiveCrop(size=(100, 100))

fivecrop.size
# (100, 100)

origin_data = OxfordIIITPet(
    root="data",
    transform=None
)

p500p394origin_data = OxfordIIITPet(
    root="data",
    transform=FiveCrop(size=[500, 394])
    # transform=FiveCrop(size=[600])
    # transform=FiveCrop(size=[600, 600])
)

p300_data = OxfordIIITPet(
    root="data",
    transform=FiveCrop(size=300)
)

p200_data = OxfordIIITPet(
    root="data",
    transform=FiveCrop(size=200)
)

p100_data = OxfordIIITPet(
    root="data",
    transform=FiveCrop(size=100)
)

p50_data = OxfordIIITPet(
    root="data",
    transform=FiveCrop(size=50)
)

p10_data = OxfordIIITPet(
    root="data",
    transform=FiveCrop(size=10)
)

p200p300_data = OxfordIIITPet(
    root="data",
    transform=FiveCrop(size=[200, 300])
)

p300p200_data = OxfordIIITPet(
    root="data",
    transform=FiveCrop(size=[300, 200])
)

import matplotlib.pyplot as plt

def show_images1(fcims, main_title=None):
    plt.figure(figsize=(10, 5))
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    titles = ['Top-left', 'Top-right', 'bottom-left',
              'bottom-right', 'center']
    for i, fcim in zip(range(1, 6), fcims):
        plt.subplot(1, 5, i)
        plt.title(label=titles[i-1], fontsize=14)
        plt.imshow(X=fcim)
    plt.tight_layout()
    plt.show()

plt.figure(figsize=(7, 9))
plt.title(label="Origin_data", fontsize=14)
plt.imshow(X=origin_data[0][0])
show_images1(fcims=p500p394origin_data[0][0], main_title="p500p394origin_data")
show_images1(fcims=p300_data[0][0], main_title="p300_data")
show_images1(fcims=p200_data[0][0], main_title="p200_data")
show_images1(fcims=p100_data[0][0], main_title="p100_data")
show_images1(fcims=p50_data[0][0], main_title="p50_data")
show_images1(fcims=p10_data[0][0], main_title="p10_data")
show_images1(fcims=p200p300_data[0][0], main_title="p200p300_data")
show_images1(fcims=p300p200_data[0][0], main_title="p300p200_data")

# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓
def show_images2(im, main_title=None, s=None):
    plt.figure(figsize=(10, 5))
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    titles = ['Top-left', 'Top-right', 'bottom-left',
              'bottom-right', 'center']
    if not s:
        s = [im.size[1], im.size[0]] 
    fc = FiveCrop(size=s) # Here
    for i, fcim in zip(range(1, 6), fc(im)):
        plt.subplot(1, 5, i)
        plt.title(label=titles[i-1], fontsize=14)
        plt.imshow(X=fcim) # Here
    plt.tight_layout()
    plt.show()

plt.figure(figsize=(7, 9))
plt.title(label="Origin_data", fontsize=14)
plt.imshow(X=origin_data[0][0])
show_images2(im=origin_data[0][0], main_title="p500p394origin_data")
# show_images2(im=origin_data[0][0], main_title="p500p394origin_data",
#              s=[500, 394])
show_images2(im=origin_data[0][0], main_title="p300_data", s=300)
show_images2(im=origin_data[0][0], main_title="p200_data", s=200)
show_images2(im=origin_data[0][0], main_title="p100_data", s=100)
show_images2(im=origin_data[0][0], main_title="p50_data", s=50)
show_images2(im=origin_data[0][0], main_title="p10_data", s=10)
show_images2(im=origin_data[0][0], main_title="p200p300_data", s=[200, 300])
show_images2(im=origin_data[0][0], main_title="p300p200_data", s=[300, 200])

image description

image description

image description

image description

image description

image description

image description

image description

image description

今天带大家了解了的相关知识,希望对你有所帮助;关于文章的技术知识我们会一点点深入介绍,欢迎大家关注golang学习网公众号,一起学习编程~

版本声明
本文转载于:dev.to 如有侵犯,请联系study_golang@163.com删除
JavaScript 数组:地图JavaScript 数组:地图
上一篇
JavaScript 数组:地图
地平线、理想钱高管联手创立机器人公司,获近亿元种子轮融资
下一篇
地平线、理想钱高管联手创立机器人公司,获近亿元种子轮融资
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    511次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    498次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 千音漫语:智能声音创作助手,AI配音、音视频翻译一站搞定!
    千音漫语
    千音漫语,北京熠声科技倾力打造的智能声音创作助手,提供AI配音、音视频翻译、语音识别、声音克隆等强大功能,助力有声书制作、视频创作、教育培训等领域,官网:https://qianyin123.com
    192次使用
  • MiniWork:智能高效AI工具平台,一站式工作学习效率解决方案
    MiniWork
    MiniWork是一款智能高效的AI工具平台,专为提升工作与学习效率而设计。整合文本处理、图像生成、营销策划及运营管理等多元AI工具,提供精准智能解决方案,让复杂工作简单高效。
    193次使用
  • NoCode (nocode.cn):零代码构建应用、网站、管理系统,降低开发门槛
    NoCode
    NoCode (nocode.cn)是领先的无代码开发平台,通过拖放、AI对话等简单操作,助您快速创建各类应用、网站与管理系统。无需编程知识,轻松实现个人生活、商业经营、企业管理多场景需求,大幅降低开发门槛,高效低成本。
    191次使用
  • 达医智影:阿里巴巴达摩院医疗AI影像早筛平台,CT一扫多筛癌症急慢病
    达医智影
    达医智影,阿里巴巴达摩院医疗AI创新力作。全球率先利用平扫CT实现“一扫多筛”,仅一次CT扫描即可高效识别多种癌症、急症及慢病,为疾病早期发现提供智能、精准的AI影像早筛解决方案。
    198次使用
  • 智慧芽Eureka:更懂技术创新的AI Agent平台,助力研发效率飞跃
    智慧芽Eureka
    智慧芽Eureka,专为技术创新打造的AI Agent平台。深度理解专利、研发、生物医药、材料、科创等复杂场景,通过专家级AI Agent精准执行任务,智能化工作流解放70%生产力,让您专注核心创新。
    213次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码