PyTorch 中的随机透视
来源:dev.to
2025-01-19 22:00:50
0浏览
收藏
今日不肯埋头,明日何以抬头!每日一句努力自己的话哈哈~哈喽,今天我将给大家带来一篇《PyTorch 中的随机透视》,主要内容是讲解等等,感兴趣的朋友可以收藏或者有更好的建议在评论提出,我都会认真看的!大家一起进步,一起学习!
请我喝杯咖啡☕
*备忘录:
- 我的帖子解释了 randomrotation()。
- 我的帖子解释了 randomaffine()。
- 我的帖子解释了 randomhorizontalflip()。
- 我的帖子解释了 randomverticalflip()。
- 我的帖子解释了 oxfordiiitpet()。
randomperspective() 可以对零个或多个图像进行透视变换,如下所示:
*备忘录:
- 初始化的第一个参数是 distortion_scale(可选-默认:0.5-类型:int 或 float):
*备注:
- 可以进行透视变换。
- 必须是 0 <= x <= 1.
- 初始化的第二个参数是 p(可选-默认:0.5-类型:int 或 float):
*备注:
- 每张图像是否经过透视变换的概率。
- 必须是 0 <= x <= 1.
- 初始化的第三个参数是插值(optional-default:interpolationmode.bilinear-type:interpolationmode)。
- 初始化的第四个参数是 fill(optional-default:0-type:int, float or tuple/list(int or float)):
*备注:
- 它可以改变图像的背景。 *对图像进行透视变换时可以看到背景。
- 元组/列表必须是具有 3 个元素的一维。
- 有第一个参数(必需类型:pil 图像或张量(int))。 *它必须是 3d 张量。
- v2建议按照v1还是v2使用?我应该使用哪一个?
from torchvision.datasets import OxfordIIITPet from torchvision.transforms.v2 import RandomPerspective from torchvision.transforms.functional import InterpolationMode randompers = RandomPerspective() randompers = RandomPerspective(distortion_scale=0.5, p=0.5, interpolation=InterpolationMode.BILINEAR, fill=0) randompers # RandomPerspective(p=0.5, # distortion_scale=0.5, # interpolation=InterpolationMode.BILINEAR, # fill=0) randompers.distortion_scale # 0.5 randompers.p # 0.5 randompers.interpolation # <InterpolationMode.BILINEAR: 'bilinear'> randompers.fill # 0 origin_data = OxfordIIITPet( root="data", transform=None # transform=RandomPerspective(distortion_scale=0) # transform=RandomPerspective(p=0) ) dis02p1_data = OxfordIIITPet( root="data", transform=RandomPerspective(distortion_scale=0.2, p=1) ) dis06p1_data = OxfordIIITPet( root="data", transform=RandomPerspective(distortion_scale=0.6, p=1) ) dis1p1_data = OxfordIIITPet( root="data", transform=RandomPerspective(distortion_scale=1, p=1) ) p1_data = OxfordIIITPet( root="data", transform=RandomPerspective(p=1) ) p05_data = OxfordIIITPet( root="data", transform=RandomPerspective(p=0.5) ) p1fillgray_data = OxfordIIITPet( root="data", transform=RandomPerspective(p=1, fill=150) ) p1fillpurple_data = OxfordIIITPet( root="data", transform=RandomPerspective(p=1, fill=[160, 32, 240]) ) import matplotlib.pyplot as plt def show_images1(data, main_title=None): plt.figure(figsize=(10, 5)) plt.suptitle(t=main_title, y=0.8, fontsize=14) for i, (im, _) in zip(range(1, 6), data): plt.subplot(1, 5, i) plt.imshow(X=im) plt.xticks(ticks=[]) plt.yticks(ticks=[]) plt.tight_layout() plt.show() show_images1(data=origin_data, main_title="origin_data") show_images1(data=dis02p1_data, main_title="dis02p1_data") show_images1(data=dis06p1_data, main_title="dis06p1_data") show_images1(data=dis1p1_data, main_title="dis1p1_data") show_images1(data=p1_data, main_title="p1_data") show_images1(data=p05_data, main_title="p05_data") show_images1(data=p1fillgray_data, main_title="p1fillgray_data") show_images1(data=p1fillpurple_data, main_title="p1fillpurple_data") # ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓ def show_images2(data, main_title=None, d=0.5, prob=0.5, f=0): plt.figure(figsize=(10, 5)) plt.suptitle(t=main_title, y=0.8, fontsize=14) for i, (im, _) in zip(range(1, 6), data): plt.subplot(1, 5, i) rp = RandomPerspective(distortion_scale=d, p=prob, fill=f) # Here plt.imshow(X=rp(im)) # Here plt.xticks(ticks=[]) plt.yticks(ticks=[]) plt.tight_layout() plt.show() show_images2(data=origin_data, main_title="origin_data", d=0) show_images2(data=origin_data, main_title="dis02p1_data", d=0.2, prob=1) show_images2(data=origin_data, main_title="dis06p1_data", d=0.6, prob=1) show_images2(data=origin_data, main_title="dis1p1_data", d=1, prob=1) show_images2(data=origin_data, main_title="p1_data", prob=1) show_images2(data=origin_data, main_title="p05_data", prob=0.5) show_images2(data=origin_data, main_title="p1fillgray_data", prob=1, f=150) show_images2(data=origin_data, main_title="p1fillpurple_data", prob=1, f=[160, 32, 240])
终于介绍完啦!小伙伴们,这篇关于《PyTorch 中的随机透视》的介绍应该让你收获多多了吧!欢迎大家收藏或分享给更多需要学习的朋友吧~golang学习网公众号也会发布文章相关知识,快来关注吧!
版本声明
本文转载于:dev.to 如有侵犯,请联系study_golang@163.com删除

- 上一篇
- JHU 陈杰能:世界模型+心智模型,让具身智能体拥有「想象力」

- 下一篇
- 特朗普称“极有可能”将TikTok禁令延期90天
查看更多
最新文章
-
- 文章 · python教程 | 7小时前 |
- PyCharm安装配置怎么选?保姆级教程+详细选项推荐
- 448浏览 收藏
-
- 文章 · python教程 | 8小时前 |
- Pythonindex函数详解,手把手教你玩转列表字符串索引定位
- 198浏览 收藏
-
- 文章 · python教程 | 8小时前 |
- PyCharm解释器在哪?手把手教你快速定位解释器位置
- 303浏览 收藏
-
- 文章 · python教程 | 8小时前 |
- Pythoneval函数怎么用?手把手教你玩转表达式求值小能手
- 214浏览 收藏
-
- 文章 · python教程 | 8小时前 |
- Python执行SQL查询超简单教程(附代码实例)
- 442浏览 收藏
-
- 文章 · python教程 | 8小时前 |
- PyCharm激活码怎么填?手把手教你正确激活工具
- 191浏览 收藏
-
- 文章 · python教程 | 9小时前 |
- Python中的str是什么?手把手教你搞定字符串类型
- 291浏览 收藏
-
- 文章 · python教程 | 9小时前 |
- Python中break是什么意思?手把手教你搞定break用法
- 310浏览 收藏
-
- 文章 · python教程 | 9小时前 |
- 手把手教你用Python搭建WebSocket通信超简单
- 169浏览 收藏
-
- 文章 · python教程 | 9小时前 |
- PythonORM框架教程:手把手教你轻松上手!
- 157浏览 收藏
-
- 文章 · python教程 | 9小时前 |
- Pythonsplit函数怎么用?字符串分割超详细教程
- 315浏览 收藏
-
- 文章 · python教程 | 9小时前 |
- 手把手教你用Python导入Numpy,科学计算库就这么简单!
- 478浏览 收藏
查看更多
课程推荐
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
查看更多
AI推荐
-
- 茅茅虫AIGC检测
- 茅茅虫AIGC检测,湖南茅茅虫科技有限公司倾力打造,运用NLP技术精准识别AI生成文本,提供论文、专著等学术文本的AIGC检测服务。支持多种格式,生成可视化报告,保障您的学术诚信和内容质量。
- 63次使用
-
- 赛林匹克平台(Challympics)
- 探索赛林匹克平台Challympics,一个聚焦人工智能、算力算法、量子计算等前沿技术的赛事聚合平台。连接产学研用,助力科技创新与产业升级。
- 84次使用
-
- 笔格AIPPT
- SEO 笔格AIPPT是135编辑器推出的AI智能PPT制作平台,依托DeepSeek大模型,实现智能大纲生成、一键PPT生成、AI文字优化、图像生成等功能。免费试用,提升PPT制作效率,适用于商务演示、教育培训等多种场景。
- 90次使用
-
- 稿定PPT
- 告别PPT制作难题!稿定PPT提供海量模板、AI智能生成、在线协作,助您轻松制作专业演示文稿。职场办公、教育学习、企业服务全覆盖,降本增效,释放创意!
- 83次使用
-
- Suno苏诺中文版
- 探索Suno苏诺中文版,一款颠覆传统音乐创作的AI平台。无需专业技能,轻松创作个性化音乐。智能词曲生成、风格迁移、海量音效,释放您的音乐灵感!
- 85次使用
查看更多
相关文章
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览