当前位置:首页 > 文章列表 > 文章 > python教程 > PyTorch 中的随机透视

PyTorch 中的随机透视

来源:dev.to 2025-01-19 22:00:50 0浏览 收藏

今日不肯埋头,明日何以抬头!每日一句努力自己的话哈哈~哈喽,今天我将给大家带来一篇《PyTorch 中的随机透视》,主要内容是讲解等等,感兴趣的朋友可以收藏或者有更好的建议在评论提出,我都会认真看的!大家一起进步,一起学习!

请我喝杯咖啡☕

*备忘录:

  • 我的帖子解释了 randomrotation()。
  • 我的帖子解释了 randomaffine()。
  • 我的帖子解释了 randomhorizo​​ntalflip()。
  • 我的帖子解释了 randomverticalflip()。
  • 我的帖子解释了 oxfordiiitpet()。

randomperspective() 可以对零个或多个图像进行透视变换,如下所示:

*备忘录:

  • 初始化的第一个参数是 distortion_scale(可选-默认:0.5-类型:int 或 float): *备注:
    • 可以进行透视变换。
    • 必须是 0 <= x <= 1.
  • 初始化的第二个参数是 p(可选-默认:0.5-类型:int 或 float): *备注:
    • 每张图像是否经过透视变换的概率。
    • 必须是 0 <= x <= 1.
  • 初始化的第三个参数是插值(optional-default:interpolationmode.bilinear-type:interpolationmode)。
  • 初始化的第四个参数是 fill(optional-default:0-type:int, float or tuple/list(int or float)): *备注:
    • 它可以改变图像的背景。 *对图像进行透视变换时可以看到背景。
    • 元组/列表必须是具有 3 个元素的一维。
  • 有第一个参数(必需类型:pil 图像或张量(int))。 *它必须是 3d 张量。
  • v2建议按照v1还是v2使用?我应该使用哪一个?
from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import RandomPerspective
from torchvision.transforms.functional import InterpolationMode

randompers = RandomPerspective()
randompers = RandomPerspective(distortion_scale=0.5,
                               p=0.5,
                               interpolation=InterpolationMode.BILINEAR,
                               fill=0)
randompers
# RandomPerspective(p=0.5,
#                   distortion_scale=0.5,
#                   interpolation=InterpolationMode.BILINEAR,
#                   fill=0)

randompers.distortion_scale
# 0.5

randompers.p
# 0.5

randompers.interpolation
# <InterpolationMode.BILINEAR: 'bilinear'>

randompers.fill
# 0

origin_data = OxfordIIITPet(
    root="data",
    transform=None
    # transform=RandomPerspective(distortion_scale=0)
    # transform=RandomPerspective(p=0)
)

dis02p1_data = OxfordIIITPet(
    root="data",
    transform=RandomPerspective(distortion_scale=0.2, p=1)
)

dis06p1_data = OxfordIIITPet(
    root="data",
    transform=RandomPerspective(distortion_scale=0.6, p=1)
)

dis1p1_data = OxfordIIITPet(
    root="data",
    transform=RandomPerspective(distortion_scale=1, p=1)
)

p1_data = OxfordIIITPet(
    root="data",
    transform=RandomPerspective(p=1)
)

p05_data = OxfordIIITPet(
    root="data",
    transform=RandomPerspective(p=0.5)
)

p1fillgray_data = OxfordIIITPet(
    root="data",
    transform=RandomPerspective(p=1, fill=150)
)

p1fillpurple_data = OxfordIIITPet(
    root="data",
    transform=RandomPerspective(p=1, fill=[160, 32, 240])
)

import matplotlib.pyplot as plt

def show_images1(data, main_title=None):
    plt.figure(figsize=(10, 5))
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i, (im, _) in zip(range(1, 6), data):
        plt.subplot(1, 5, i)
        plt.imshow(X=im)
        plt.xticks(ticks=[])
        plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images1(data=origin_data, main_title="origin_data")
show_images1(data=dis02p1_data, main_title="dis02p1_data")
show_images1(data=dis06p1_data, main_title="dis06p1_data")
show_images1(data=dis1p1_data, main_title="dis1p1_data")
show_images1(data=p1_data, main_title="p1_data")
show_images1(data=p05_data, main_title="p05_data")
show_images1(data=p1fillgray_data, main_title="p1fillgray_data")
show_images1(data=p1fillpurple_data, main_title="p1fillpurple_data")

# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓
def show_images2(data, main_title=None, d=0.5, prob=0.5, f=0):
    plt.figure(figsize=(10, 5))
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i, (im, _) in zip(range(1, 6), data):
        plt.subplot(1, 5, i)
        rp = RandomPerspective(distortion_scale=d, p=prob, fill=f) # Here
        plt.imshow(X=rp(im)) # Here
        plt.xticks(ticks=[])
        plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images2(data=origin_data, main_title="origin_data", d=0)
show_images2(data=origin_data, main_title="dis02p1_data", d=0.2, prob=1)
show_images2(data=origin_data, main_title="dis06p1_data", d=0.6, prob=1)
show_images2(data=origin_data, main_title="dis1p1_data", d=1, prob=1)
show_images2(data=origin_data, main_title="p1_data", prob=1)
show_images2(data=origin_data, main_title="p05_data", prob=0.5)
show_images2(data=origin_data, main_title="p1fillgray_data", prob=1, f=150)
show_images2(data=origin_data, main_title="p1fillpurple_data", prob=1,
             f=[160, 32, 240])

image description

image description

image description

image description

image description

image description

image description

image description

终于介绍完啦!小伙伴们,这篇关于《PyTorch 中的随机透视》的介绍应该让你收获多多了吧!欢迎大家收藏或分享给更多需要学习的朋友吧~golang学习网公众号也会发布文章相关知识,快来关注吧!

版本声明
本文转载于:dev.to 如有侵犯,请联系study_golang@163.com删除
JHU 陈杰能:世界模型+心智模型,让具身智能体拥有「想象力」JHU 陈杰能:世界模型+心智模型,让具身智能体拥有「想象力」
上一篇
JHU 陈杰能:世界模型+心智模型,让具身智能体拥有「想象力」
特朗普称“极有可能”将TikTok禁令延期90天
下一篇
特朗普称“极有可能”将TikTok禁令延期90天
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    543次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    516次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    500次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    485次学习
查看更多
AI推荐
  • ChatExcel酷表:告别Excel难题,北大团队AI助手助您轻松处理数据
    ChatExcel酷表
    ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
    3194次使用
  • Any绘本:开源免费AI绘本创作工具深度解析
    Any绘本
    探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
    3407次使用
  • 可赞AI:AI驱动办公可视化智能工具,一键高效生成文档图表脑图
    可赞AI
    可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
    3437次使用
  • 星月写作:AI网文创作神器,助力爆款小说速成
    星月写作
    星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
    4545次使用
  • MagicLight.ai:叙事驱动AI动画视频创作平台 | 高效生成专业级故事动画
    MagicLight
    MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
    3815次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码