PyTorch 中的 CocoCaptions (1)
来源:dev.to
2025-01-19 10:15:48
0浏览
收藏
今天golang学习网给大家带来了《PyTorch 中的 CocoCaptions (1)》,其中涉及到的知识点包括等等,无论你是小白还是老手,都适合看一看哦~有好的建议也欢迎大家在评论留言,若是看完有所收获,也希望大家能多多点赞支持呀!一起加油学习~
请我喝杯咖啡☕
*备忘录:
- 我的帖子解释了cocodetection()使用带有captions_train2014.json、instances_train2014.json和person_keypoints_train2014.json的train2014、带有captions_val2014.json、instances_val2014.json和person_keypoints_val2014.json的val2014以及带有image_info_test2014.json的test2017, image_info_test2015.json 和 image_info_test-dev2015.json。
- 我的帖子解释了cocodetection()使用train2017与captions_train2017.json,instances_train2017.json和person_keypoints_train2017.json,val2017与captions_val2017.json,instances_val2017.json和person_keypoints_val2017.json和test2017与image_info_test2017.json和image_info_test-dev2017.json.
- 我的帖子解释了cocodetection()使用train2017与stuff_train2017.json,val2017与stuff_val2017.json,stuff_train2017_pixelmaps与stuff_train2017.json,stuff_val2017_pixelmaps与stuff_val2017.json,panoptic_train2017与panoptic_train2017.json,panoptic_val2017与panoptic_val2017.json 和 unlabeled2017 以及 image_info_unlabeled2017.json。
- 我的帖子解释了 ms coco。
cococaptions() 可以使用 ms coco 数据集,如下所示。 *这适用于带有captions_train2014.json、instances_train2014.json和person_keypoints_train2014.json的train2014,带有captions_val2014.json、instances_val2014.json和person_keypoints_val2014.json的val2014以及带有image_info_test2014.json、image_info_test2015.json和的test2017 image_info_test-dev2015.json:
*备忘录:
- 第一个参数是root(必需类型:str或pathlib.path):
*备注:
- 这是图像的路径。
- 绝对或相对路径都是可能的。
- 第二个参数是 annfile(必需类型:str 或 pathlib.path):
*备注:
- 这是注释的路径。
- 绝对或相对路径都是可能的。
- 第三个参数是transform(optional-default:none-type:callable)。
- 第四个参数是 target_transform(optional-default:none-type:callable)。
- 第五个参数是transforms(optional-default:none-type:callable)。
from torchvision.datasets import CocoCaptions
cap_train2014_data = CocoCaptions(
root="data/coco/imgs/train2014",
annFile="data/coco/anns/trainval2014/captions_train2014.json"
)
cap_train2014_data = CocoCaptions(
root="data/coco/imgs/train2014",
annFile="data/coco/anns/trainval2014/captions_train2014.json",
transform=None,
target_transform=None,
transforms=None
)
ins_train2014_data = CocoCaptions(
root="data/coco/imgs/train2014",
annFile="data/coco/anns/trainval2014/instances_train2014.json"
)
pk_train2014_data = CocoCaptions(
root="data/coco/imgs/train2014",
annFile="data/coco/anns/trainval2014/person_keypoints_train2014.json"
)
len(cap_train2014_data), len(ins_train2014_data), len(pk_train2014_data)
# (82783, 82783, 82783)
cap_val2014_data = CocoCaptions(
root="data/coco/imgs/val2014",
annFile="data/coco/anns/trainval2014/captions_val2014.json"
)
ins_val2014_data = CocoCaptions(
root="data/coco/imgs/val2014",
annFile="data/coco/anns/trainval2014/instances_val2014.json"
)
pk_val2014_data = CocoCaptions(
root="data/coco/imgs/val2014",
annFile="data/coco/anns/trainval2014/person_keypoints_val2014.json"
)
len(cap_val2014_data), len(ins_val2014_data), len(pk_val2014_data)
# (40504, 40504, 40504)
test2014_data = CocoCaptions(
root="data/coco/imgs/test2014",
annFile="data/coco/anns/test2014/image_info_test2014.json"
)
test2015_data = CocoCaptions(
root="data/coco/imgs/test2015",
annFile="data/coco/anns/test2015/image_info_test2015.json"
)
testdev2015_data = CocoCaptions(
root="data/coco/imgs/test2015",
annFile="data/coco/anns/test2015/image_info_test-dev2015.json"
)
len(test2014_data), len(test2015_data), len(testdev2015_data)
# (40775, 81434, 20288)
cap_train2014_data
# Dataset CocoCaptions
# Number of datapoints: 82783
# Root location: data/coco/imgs/train2014
cap_train2014_data.root
# 'data/coco/imgs/train2014'
print(cap_train2014_data.transform)
# None
print(cap_train2014_data.target_transform)
# None
print(cap_train2014_data.transforms)
# None
cap_train2014_data.coco
# <pycocotools.coco.COCO at 0x759028ee1d00>
cap_train2014_data[26]
# (<PIL.Image.Image image mode=RGB size=427x640>,
# ['three zeebras standing in a grassy field walking',
# 'Three zebras are standing in an open field.',
# 'Three zebra are walking through the grass of a field.',
# 'Three zebras standing on a grassy dirt field.',
# 'Three zebras grazing in green grass field area.'])
cap_train2014_data[179]
# (<PIL.Image.Image image mode=RGB size=480x640>,
# ['a young guy walking in a forrest holding an object in his hand',
# 'A partially black and white photo of a man throwing ... the woods.',
# 'A disc golfer releases a throw from a dirt tee ... wooded course.',
# 'The person is in the clearing of a wooded area. ',
# 'a person throwing a frisbee at many trees '])
cap_train2014_data[194]
# (<PIL.Image.Image image mode=RGB size=428x640>,
# ['A person on a court with a tennis racket.',
# 'A man that is holding a racquet standing in the grass.',
# 'A tennis player hits the ball during a match.',
# 'The tennis player is poised to serve a ball.',
# 'Man in white playing tennis on a court.'])
ins_train2014_data[26] # Error
ins_train2014_data[179] # Error
ins_train2014_data[194] # Error
pk_train2014_data[26]
# (<PIL.Image.Image image mode=RGB size=427x640>, [])
pk_train2014_data[179] # Error
pk_train2014_data[194] # Error
cap_val2014_data[26]
# (<PIL.Image.Image image mode=RGB size=640x360>,
# ['a close up of a child next to a cake with balloons',
# 'A baby sitting in front of a cake wearing a tie.',
# 'The young boy is dressed in a tie that matches his cake. ',
# 'A child eating a birthday cake near some balloons.',
# 'A baby eating a cake with a tie around ... the background.'])
cap_val2014_data[179]
# (<PIL.Image.Image image mode=RGB size=500x302>,
# ['Many small children are posing together in the ... white photo. ',
# 'A vintage school picture of grade school aged children.',
# 'A black and white photo of a group of kids.',
# 'A group of children standing next to each other.',
# 'A group of children standing and sitting beside each other. '])
cap_val2014_data[194]
# (<PIL.Image.Image image mode=RGB size=640x427>,
# ['A man hitting a tennis ball with a racquet.',
# 'champion tennis player swats at the ball hoping to win',
# 'A man is hitting his tennis ball with a recket on the court.',
# 'a tennis player on a court with a racket',
# 'A professional tennis player hits a ball as fans watch.'])
ins_val2014_data[26] # Error
ins_val2014_data[179] # Error
ins_val2014_data[194] # Error
pk_val2014_data[26] # Error
pk_val2014_data[179] # Error
pk_val2014_data[194] # Error
test2014_data[26]
# (<PIL.Image.Image image mode=RGB size=640x640>, [])
test2014_data[179]
# (<PIL.Image.Image image mode=RGB size=640x480>, [])
test2014_data[194]
# (<PIL.Image.Image image mode=RGB size=640x360>, [])
test2015_data[26]
# (<PIL.Image.Image image mode=RGB size=640x480>, [])
test2015_data[179]
# (<PIL.Image.Image image mode=RGB size=640x426>, [])
test2015_data[194]
# (<PIL.Image.Image image mode=RGB size=640x480>, [])
testdev2015_data[26]
# (<PIL.Image.Image image mode=RGB size=640x360>, [])
testdev2015_data[179]
# (<PIL.Image.Image image mode=RGB size=640x480>, [])
testdev2015_data[194]
# (<PIL.Image.Image image mode=RGB size=640x480>, [])
import matplotlib.pyplot as plt
from matplotlib.patches import Polygon, Rectangle
import numpy as np
from pycocotools import mask
def show_images(data, ims, main_title=None):
file = data.root.split('/')[-1]
fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(14, 8))
fig.suptitle(t=main_title, y=0.9, fontsize=14)
x_crd = 0.02
for i, axis in zip(ims, axes.ravel()):
if data[i][1]:
im, anns = data[i]
axis.imshow(X=im)
y_crd = 0.0
for j, ann in enumerate(iterable=anns):
text_list = ann.split()
if len(text_list) > 9:
text = " ".join(text_list[0:10]) + " ..."
else:
text = " ".join(text_list)
plt.figtext(x=x_crd, y=y_crd, fontsize=10,
s=f'{j} : {text}')
y_crd -= 0.06
x_crd += 0.325
if i == 2 and file == "val2017":
x_crd += 0.06
elif not data[i][1]:
im, _ = data[i]
axis.imshow(X=im)
fig.tight_layout()
plt.show()
ims = (26, 179, 194)
show_images(data=cap_train2014_data, ims=ims,
main_title="cap_train2014_data")
show_images(data=cap_val2014_data, ims=ims,
main_title="cap_val2014_data")
show_images(data=test2014_data, ims=ims,
main_title="test2014_data")
show_images(data=test2015_data, ims=ims,
main_title="test2015_data")
show_images(data=testdev2015_data, ims=ims,
main_title="testdev2015_data")





文中关于的知识介绍,希望对你的学习有所帮助!若是受益匪浅,那就动动鼠标收藏这篇《PyTorch 中的 CocoCaptions (1)》文章吧,也可关注golang学习网公众号了解相关技术文章。
版本声明
本文转载于:dev.to 如有侵犯,请联系study_golang@163.com删除
曝上汽集团正组建大乘用车板块,管理层开启全员竞聘
- 上一篇
- 曝上汽集团正组建大乘用车板块,管理层开启全员竞聘
- 下一篇
- 孩子探索世界的第一个AI大模型工具!噜咔博士AI拍学机正式发布
查看更多
最新文章
-
- 文章 · python教程 | 34分钟前 |
- Python类型错误调试方法详解
- 129浏览 收藏
-
- 文章 · python教程 | 39分钟前 |
- 函数与方法有何不同?详解解析
- 405浏览 收藏
-
- 文章 · python教程 | 43分钟前 | docker Python Dockerfile 官方Python镜像 容器安装
- Docker安装Python步骤详解教程
- 391浏览 收藏
-
- 文章 · python教程 | 54分钟前 |
- DjangoJWT刷新策略与页面优化技巧
- 490浏览 收藏
-
- 文章 · python教程 | 58分钟前 |
- pandas缺失值处理技巧与方法
- 408浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- TF变量零初始化与优化器关系解析
- 427浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python字符串与列表反转技巧
- 126浏览 收藏
-
- 文章 · python教程 | 1小时前 | Python 错误处理 AssertionError 生产环境 assert语句
- Python断言失败解决方法详解
- 133浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- 动态设置NetCDF图表标题的实用方法
- 247浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- PyCharm切换英文界面教程
- 405浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- Behave教程:单个BDD示例运行方法
- 411浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- PythonGTK3动态CSS技巧分享
- 497浏览 收藏
查看更多
课程推荐
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 500次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 485次学习
查看更多
AI推荐
-
- ChatExcel酷表
- ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
- 3201次使用
-
- Any绘本
- 探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
- 3414次使用
-
- 可赞AI
- 可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
- 3444次使用
-
- 星月写作
- 星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
- 4552次使用
-
- MagicLight
- MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
- 3822次使用
查看更多
相关文章
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览

