PyTorch 中的 CocoCaptions (1)
来源:dev.to
2025-01-19 10:15:48
0浏览
收藏
今天golang学习网给大家带来了《PyTorch 中的 CocoCaptions (1)》,其中涉及到的知识点包括等等,无论你是小白还是老手,都适合看一看哦~有好的建议也欢迎大家在评论留言,若是看完有所收获,也希望大家能多多点赞支持呀!一起加油学习~
请我喝杯咖啡☕
*备忘录:
- 我的帖子解释了cocodetection()使用带有captions_train2014.json、instances_train2014.json和person_keypoints_train2014.json的train2014、带有captions_val2014.json、instances_val2014.json和person_keypoints_val2014.json的val2014以及带有image_info_test2014.json的test2017, image_info_test2015.json 和 image_info_test-dev2015.json。
- 我的帖子解释了cocodetection()使用train2017与captions_train2017.json,instances_train2017.json和person_keypoints_train2017.json,val2017与captions_val2017.json,instances_val2017.json和person_keypoints_val2017.json和test2017与image_info_test2017.json和image_info_test-dev2017.json.
- 我的帖子解释了cocodetection()使用train2017与stuff_train2017.json,val2017与stuff_val2017.json,stuff_train2017_pixelmaps与stuff_train2017.json,stuff_val2017_pixelmaps与stuff_val2017.json,panoptic_train2017与panoptic_train2017.json,panoptic_val2017与panoptic_val2017.json 和 unlabeled2017 以及 image_info_unlabeled2017.json。
- 我的帖子解释了 ms coco。
cococaptions() 可以使用 ms coco 数据集,如下所示。 *这适用于带有captions_train2014.json、instances_train2014.json和person_keypoints_train2014.json的train2014,带有captions_val2014.json、instances_val2014.json和person_keypoints_val2014.json的val2014以及带有image_info_test2014.json、image_info_test2015.json和的test2017 image_info_test-dev2015.json:
*备忘录:
- 第一个参数是root(必需类型:str或pathlib.path):
*备注:
- 这是图像的路径。
- 绝对或相对路径都是可能的。
- 第二个参数是 annfile(必需类型:str 或 pathlib.path):
*备注:
- 这是注释的路径。
- 绝对或相对路径都是可能的。
- 第三个参数是transform(optional-default:none-type:callable)。
- 第四个参数是 target_transform(optional-default:none-type:callable)。
- 第五个参数是transforms(optional-default:none-type:callable)。
from torchvision.datasets import CocoCaptions cap_train2014_data = CocoCaptions( root="data/coco/imgs/train2014", annFile="data/coco/anns/trainval2014/captions_train2014.json" ) cap_train2014_data = CocoCaptions( root="data/coco/imgs/train2014", annFile="data/coco/anns/trainval2014/captions_train2014.json", transform=None, target_transform=None, transforms=None ) ins_train2014_data = CocoCaptions( root="data/coco/imgs/train2014", annFile="data/coco/anns/trainval2014/instances_train2014.json" ) pk_train2014_data = CocoCaptions( root="data/coco/imgs/train2014", annFile="data/coco/anns/trainval2014/person_keypoints_train2014.json" ) len(cap_train2014_data), len(ins_train2014_data), len(pk_train2014_data) # (82783, 82783, 82783) cap_val2014_data = CocoCaptions( root="data/coco/imgs/val2014", annFile="data/coco/anns/trainval2014/captions_val2014.json" ) ins_val2014_data = CocoCaptions( root="data/coco/imgs/val2014", annFile="data/coco/anns/trainval2014/instances_val2014.json" ) pk_val2014_data = CocoCaptions( root="data/coco/imgs/val2014", annFile="data/coco/anns/trainval2014/person_keypoints_val2014.json" ) len(cap_val2014_data), len(ins_val2014_data), len(pk_val2014_data) # (40504, 40504, 40504) test2014_data = CocoCaptions( root="data/coco/imgs/test2014", annFile="data/coco/anns/test2014/image_info_test2014.json" ) test2015_data = CocoCaptions( root="data/coco/imgs/test2015", annFile="data/coco/anns/test2015/image_info_test2015.json" ) testdev2015_data = CocoCaptions( root="data/coco/imgs/test2015", annFile="data/coco/anns/test2015/image_info_test-dev2015.json" ) len(test2014_data), len(test2015_data), len(testdev2015_data) # (40775, 81434, 20288) cap_train2014_data # Dataset CocoCaptions # Number of datapoints: 82783 # Root location: data/coco/imgs/train2014 cap_train2014_data.root # 'data/coco/imgs/train2014' print(cap_train2014_data.transform) # None print(cap_train2014_data.target_transform) # None print(cap_train2014_data.transforms) # None cap_train2014_data.coco # <pycocotools.coco.COCO at 0x759028ee1d00> cap_train2014_data[26] # (<PIL.Image.Image image mode=RGB size=427x640>, # ['three zeebras standing in a grassy field walking', # 'Three zebras are standing in an open field.', # 'Three zebra are walking through the grass of a field.', # 'Three zebras standing on a grassy dirt field.', # 'Three zebras grazing in green grass field area.']) cap_train2014_data[179] # (<PIL.Image.Image image mode=RGB size=480x640>, # ['a young guy walking in a forrest holding an object in his hand', # 'A partially black and white photo of a man throwing ... the woods.', # 'A disc golfer releases a throw from a dirt tee ... wooded course.', # 'The person is in the clearing of a wooded area. ', # 'a person throwing a frisbee at many trees ']) cap_train2014_data[194] # (<PIL.Image.Image image mode=RGB size=428x640>, # ['A person on a court with a tennis racket.', # 'A man that is holding a racquet standing in the grass.', # 'A tennis player hits the ball during a match.', # 'The tennis player is poised to serve a ball.', # 'Man in white playing tennis on a court.']) ins_train2014_data[26] # Error ins_train2014_data[179] # Error ins_train2014_data[194] # Error pk_train2014_data[26] # (<PIL.Image.Image image mode=RGB size=427x640>, []) pk_train2014_data[179] # Error pk_train2014_data[194] # Error cap_val2014_data[26] # (<PIL.Image.Image image mode=RGB size=640x360>, # ['a close up of a child next to a cake with balloons', # 'A baby sitting in front of a cake wearing a tie.', # 'The young boy is dressed in a tie that matches his cake. ', # 'A child eating a birthday cake near some balloons.', # 'A baby eating a cake with a tie around ... the background.']) cap_val2014_data[179] # (<PIL.Image.Image image mode=RGB size=500x302>, # ['Many small children are posing together in the ... white photo. ', # 'A vintage school picture of grade school aged children.', # 'A black and white photo of a group of kids.', # 'A group of children standing next to each other.', # 'A group of children standing and sitting beside each other. ']) cap_val2014_data[194] # (<PIL.Image.Image image mode=RGB size=640x427>, # ['A man hitting a tennis ball with a racquet.', # 'champion tennis player swats at the ball hoping to win', # 'A man is hitting his tennis ball with a recket on the court.', # 'a tennis player on a court with a racket', # 'A professional tennis player hits a ball as fans watch.']) ins_val2014_data[26] # Error ins_val2014_data[179] # Error ins_val2014_data[194] # Error pk_val2014_data[26] # Error pk_val2014_data[179] # Error pk_val2014_data[194] # Error test2014_data[26] # (<PIL.Image.Image image mode=RGB size=640x640>, []) test2014_data[179] # (<PIL.Image.Image image mode=RGB size=640x480>, []) test2014_data[194] # (<PIL.Image.Image image mode=RGB size=640x360>, []) test2015_data[26] # (<PIL.Image.Image image mode=RGB size=640x480>, []) test2015_data[179] # (<PIL.Image.Image image mode=RGB size=640x426>, []) test2015_data[194] # (<PIL.Image.Image image mode=RGB size=640x480>, []) testdev2015_data[26] # (<PIL.Image.Image image mode=RGB size=640x360>, []) testdev2015_data[179] # (<PIL.Image.Image image mode=RGB size=640x480>, []) testdev2015_data[194] # (<PIL.Image.Image image mode=RGB size=640x480>, []) import matplotlib.pyplot as plt from matplotlib.patches import Polygon, Rectangle import numpy as np from pycocotools import mask def show_images(data, ims, main_title=None): file = data.root.split('/')[-1] fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(14, 8)) fig.suptitle(t=main_title, y=0.9, fontsize=14) x_crd = 0.02 for i, axis in zip(ims, axes.ravel()): if data[i][1]: im, anns = data[i] axis.imshow(X=im) y_crd = 0.0 for j, ann in enumerate(iterable=anns): text_list = ann.split() if len(text_list) > 9: text = " ".join(text_list[0:10]) + " ..." else: text = " ".join(text_list) plt.figtext(x=x_crd, y=y_crd, fontsize=10, s=f'{j} : {text}') y_crd -= 0.06 x_crd += 0.325 if i == 2 and file == "val2017": x_crd += 0.06 elif not data[i][1]: im, _ = data[i] axis.imshow(X=im) fig.tight_layout() plt.show() ims = (26, 179, 194) show_images(data=cap_train2014_data, ims=ims, main_title="cap_train2014_data") show_images(data=cap_val2014_data, ims=ims, main_title="cap_val2014_data") show_images(data=test2014_data, ims=ims, main_title="test2014_data") show_images(data=test2015_data, ims=ims, main_title="test2015_data") show_images(data=testdev2015_data, ims=ims, main_title="testdev2015_data")
文中关于的知识介绍,希望对你的学习有所帮助!若是受益匪浅,那就动动鼠标收藏这篇《PyTorch 中的 CocoCaptions (1)》文章吧,也可关注golang学习网公众号了解相关技术文章。
版本声明
本文转载于:dev.to 如有侵犯,请联系study_golang@163.com删除

- 上一篇
- 曝上汽集团正组建大乘用车板块,管理层开启全员竞聘

- 下一篇
- 孩子探索世界的第一个AI大模型工具!噜咔博士AI拍学机正式发布
查看更多
最新文章
-
- 文章 · python教程 | 4小时前 |
- PyCharm安装配置怎么选?保姆级教程+详细选项推荐
- 448浏览 收藏
-
- 文章 · python教程 | 4小时前 |
- Pythonindex函数详解,手把手教你玩转列表字符串索引定位
- 198浏览 收藏
-
- 文章 · python教程 | 4小时前 |
- PyCharm解释器在哪?手把手教你快速定位解释器位置
- 303浏览 收藏
-
- 文章 · python教程 | 4小时前 |
- Pythoneval函数怎么用?手把手教你玩转表达式求值小能手
- 214浏览 收藏
-
- 文章 · python教程 | 4小时前 |
- Python执行SQL查询超简单教程(附代码实例)
- 442浏览 收藏
-
- 文章 · python教程 | 4小时前 |
- PyCharm激活码怎么填?手把手教你正确激活工具
- 191浏览 收藏
-
- 文章 · python教程 | 5小时前 |
- Python中的str是什么?手把手教你搞定字符串类型
- 291浏览 收藏
-
- 文章 · python教程 | 5小时前 |
- Python中break是什么意思?手把手教你搞定break用法
- 310浏览 收藏
-
- 文章 · python教程 | 5小时前 |
- 手把手教你用Python搭建WebSocket通信超简单
- 169浏览 收藏
-
- 文章 · python教程 | 5小时前 |
- PythonORM框架教程:手把手教你轻松上手!
- 157浏览 收藏
-
- 文章 · python教程 | 5小时前 |
- Pythonsplit函数怎么用?字符串分割超详细教程
- 315浏览 收藏
-
- 文章 · python教程 | 5小时前 |
- 手把手教你用Python导入Numpy,科学计算库就这么简单!
- 478浏览 收藏
查看更多
课程推荐
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
查看更多
AI推荐
-
- 茅茅虫AIGC检测
- 茅茅虫AIGC检测,湖南茅茅虫科技有限公司倾力打造,运用NLP技术精准识别AI生成文本,提供论文、专著等学术文本的AIGC检测服务。支持多种格式,生成可视化报告,保障您的学术诚信和内容质量。
- 61次使用
-
- 赛林匹克平台(Challympics)
- 探索赛林匹克平台Challympics,一个聚焦人工智能、算力算法、量子计算等前沿技术的赛事聚合平台。连接产学研用,助力科技创新与产业升级。
- 84次使用
-
- 笔格AIPPT
- SEO 笔格AIPPT是135编辑器推出的AI智能PPT制作平台,依托DeepSeek大模型,实现智能大纲生成、一键PPT生成、AI文字优化、图像生成等功能。免费试用,提升PPT制作效率,适用于商务演示、教育培训等多种场景。
- 90次使用
-
- 稿定PPT
- 告别PPT制作难题!稿定PPT提供海量模板、AI智能生成、在线协作,助您轻松制作专业演示文稿。职场办公、教育学习、企业服务全覆盖,降本增效,释放创意!
- 83次使用
-
- Suno苏诺中文版
- 探索Suno苏诺中文版,一款颠覆传统音乐创作的AI平台。无需专业技能,轻松创作个性化音乐。智能词曲生成、风格迁移、海量音效,释放您的音乐灵感!
- 85次使用
查看更多
相关文章
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览