AI赋能传统力场:字节跳动开发高精度通用小分子力场ByteFF
本篇文章给大家分享《AI赋能传统力场:字节跳动开发高精度通用小分子力场ByteFF》,覆盖了科技周边的常见基础知识,其实一个语言的全部知识点一篇文章是不可能说完的,但希望通过这些问题,让读者对自己的掌握程度有一定的认识(B 数),从而弥补自己的不足,更好的掌握它。
字节跳动推出全新小分子力场ByteFF:兼顾精度与效率,覆盖广阔化学空间
编辑 | ScienceAI
小分子力场在药物发现领域至关重要,是计算机辅助药物设计的核心工具。一个覆盖范围广、精度高的小分子力场,将为药物研发提供坚实基础。
现有基于机器学习的力场(MLFF),例如ANI-2x和MACE-OFF23,虽然能提供精准的分子势能面预测,但却面临数据需求量巨大、计算速度慢以及外推能力不足等挑战,限制了其在药物研发中的实际应用。
Espaloma等一系列研究尝试在保留传统力场势函数形式的基础上,利用图神经网络(GNN)预测传统力场的参数,在精度和效率之间取得平衡,为传统力场的发展指明了新方向。
基于此,字节跳动研究团队开发了ByteFF力场。该力场采用符合物理约束的模型结构,构建了涵盖广泛化学空间的大规模数据集,并设计了相应的训练方案。测试结果表明,ByteFF在结构优化、分子势能面预测等多个方面均达到业界领先水平。
相关研究成果已发表在《Chemical Science》期刊上,论文标题为“Data-Driven Parametrization of Molecular Mechanics Force Fields for Expansive Chemical Space Coverage”。
论文链接:https://pubs.rsc.org/en/content/articlehtml/2025/sc/d4sc06640e
研究背景
在虚拟筛选、分子对接和自由能预测等计算方法中,小分子力场扮演着关键角色。随着计算机辅助药物设计(CADD)和有机合成技术的进步,药物研发探索的化学空间不断扩大,迫切需要一种能够在广阔化学空间内提供高精度预测的小分子力场。
近年来,量子化学和机器学习技术为传统力场的发展带来了新的机遇。虽然备受关注的MLFF能够提供高精度预测,但其模型复杂性导致训练数据需求量大、计算速度慢等问题,难以兼顾计算效率和化学空间覆盖范围。
2022年,Espaloma力场提出了一种兼顾精度和效率的新方法,即保留传统力场的势函数形式,并使用GNN预测力场参数,取代传统的查表方法。这种数据驱动的参数化方法在提高传统力场精度的同时,保持了计算效率。
在此基础上,提升力场精度和化学空间覆盖率,需要更精巧的模型结构设计和训练策略。
模型结构与训练策略
ByteFF模型结构分为特征提取层(Featurization)、图神经网络层(GNN)和输出层(Output)三部分。
特征提取层将原子和化学键的化学特征转换为向量表示。GNN层采用EGT结构进行信息传递,充分利用原子和键的特征,获得每个原子和键的化学环境表示。输出层根据化学环境预测力场参数。
ByteFF模型结构的设计保证了参数预测结果符合物理约束,例如相同化学环境的结构具有相同的结构参数预测,原子部分电荷之和等于分子的总电荷等。
在训练方面,研究团队构建了包含240万个不同分子碎片的优化数据集和320万个不同二面角的扭转数据集。基于这些数据集,研究人员设计了针对性的Hessian损失函数,能够对批量数据进行端到端训练。
由于传统力场形式的限制,难以完美拟合量子化学计算的势能面,研究人员在扭转数据集上采用了迭代的“结构优化-训练”策略,以确保ByteFF在二面角(关键自由度)上提供准确的势能面预测。
此外,研究团队还采用了预训练、训练和微调的多阶段训练流程,以达到最佳训练效果。
性能评估
在结构优化方面,ByteFF显著优于业界领先的OPLS4+ffbuilder(标记为“OPLS4 cst”)。
ByteFF能够准确预测小分子(包括环状和非环状分子)的二面角势能面。
更多结果请参考原文。
总结与展望
ByteFF力场凭借其先进的网络结构设计、充足的训练数据和匹配的训练方案,在结构优化和分子势能面预测等方面取得了显著成果。
ByteFF继承了GAFF2的非键参数,保证了与Amber力场的兼容性,但其非键相互作用方面仍有提升空间,这将是未来的研究重点。
目前,ByteFF免费API测试正在进行中,如有需求,请联系论文通讯作者并注明单位和用途。欢迎同行试用并提供反馈。
以上就是本文的全部内容了,是否有顺利帮助你解决问题?若是能给你带来学习上的帮助,请大家多多支持golang学习网!更多关于科技周边的相关知识,也可关注golang学习网公众号。

- 上一篇
- 2024年12月零跑汽车交付42517辆 全年近30万辆

- 下一篇
- 如何让电脑自动获取IP地址:详细指南与故障排查
-
- 科技周边 · 人工智能 | 2小时前 |
- 通灵义码新手速成!3步教你玩转基础用法
- 215浏览 收藏
-
- 科技周边 · 人工智能 | 2小时前 |
- 即梦AI字幕翻译导出全攻略,多语言字幕设置超详细教程
- 301浏览 收藏
-
- 科技周边 · 人工智能 | 2小时前 |
- 通灵义码5个超强技巧教学,助你快速上分变大佬!
- 167浏览 收藏
-
- 科技周边 · 人工智能 | 2小时前 |
- 朋友圈必备!豆包AI创意库强势来袭
- 122浏览 收藏
-
- 科技周边 · 人工智能 | 3小时前 |
- 拼多多商家看过来!DeepSeek自动营销话术轻松生成教程
- 194浏览 收藏
-
- 科技周边 · 人工智能 | 4小时前 |
- TENVAD:低延迟轻量化高精度AI语音检测系统
- 273浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 茅茅虫AIGC检测
- 茅茅虫AIGC检测,湖南茅茅虫科技有限公司倾力打造,运用NLP技术精准识别AI生成文本,提供论文、专著等学术文本的AIGC检测服务。支持多种格式,生成可视化报告,保障您的学术诚信和内容质量。
- 61次使用
-
- 赛林匹克平台(Challympics)
- 探索赛林匹克平台Challympics,一个聚焦人工智能、算力算法、量子计算等前沿技术的赛事聚合平台。连接产学研用,助力科技创新与产业升级。
- 83次使用
-
- 笔格AIPPT
- SEO 笔格AIPPT是135编辑器推出的AI智能PPT制作平台,依托DeepSeek大模型,实现智能大纲生成、一键PPT生成、AI文字优化、图像生成等功能。免费试用,提升PPT制作效率,适用于商务演示、教育培训等多种场景。
- 89次使用
-
- 稿定PPT
- 告别PPT制作难题!稿定PPT提供海量模板、AI智能生成、在线协作,助您轻松制作专业演示文稿。职场办公、教育学习、企业服务全覆盖,降本增效,释放创意!
- 83次使用
-
- Suno苏诺中文版
- 探索Suno苏诺中文版,一款颠覆传统音乐创作的AI平台。无需专业技能,轻松创作个性化音乐。智能词曲生成、风格迁移、海量音效,释放您的音乐灵感!
- 85次使用
-
- GPT-4王者加冕!读图做题性能炸天,凭自己就能考上斯坦福
- 2023-04-25 501浏览
-
- 单块V100训练模型提速72倍!尤洋团队新成果获AAAI 2023杰出论文奖
- 2023-04-24 501浏览
-
- ChatGPT 真的会接管世界吗?
- 2023-04-13 501浏览
-
- VR的终极形态是「假眼」?Neuralink前联合创始人掏出新产品:科学之眼!
- 2023-04-30 501浏览
-
- 实现实时制造可视性优势有哪些?
- 2023-04-15 501浏览