PyTorch 中的 CocoCaptions (2)
来源:dev.to
2025-01-11 15:48:24
0浏览
收藏
怎么入门文章编程?需要学习哪些知识点?这是新手们刚接触编程时常见的问题;下面golang学习网就来给大家整理分享一些知识点,希望能够给初学者一些帮助。本篇文章就来介绍《PyTorch 中的 CocoCaptions (2)》,涉及到,有需要的可以收藏一下
请我喝杯咖啡☕
*备忘录:
- 我的帖子解释了cococaptions()使用带有captions_train2014.json、instances_train2014.json和person_keypoints_train2014.json的train2014、带有captions_val2014.json、instances_val2014.json和person_keypoints_val2014.json的val2014以及带有image_info_test2014.json的test2017, image_info_test2015.json 和 image_info_test-dev2015.json。
- 我的帖子解释了cocodetection()使用带有captions_train2014.json、instances_train2014.json和person_keypoints_train2014.json的train2014、带有captions_val2014.json、instances_val2014.json和person_keypoints_val2014.json的val2014以及带有image_info_test2014.json的test2017, image_info_test2015.json 和 image_info_test-dev2015.json。
- 我的帖子解释了cocodetection()使用train2017与captions_train2017.json,instances_train2017.json和person_keypoints_train2017.json,val2017与captions_val2017.json,instances_val2017.json和person_keypoints_val2017.json和test2017与image_info_test2017.json和image_info_test-dev2017.json.
- 我的帖子解释了cocodetection()使用train2017与stuff_train2017.json,val2017与stuff_val2017.json,stuff_train2017_pixelmaps与stuff_train2017.json,stuff_val2017_pixelmaps与stuff_val2017.json,panoptic_train2017与panoptic_train2017.json,panoptic_val2017与panoptic_val2017.json 和 unlabeled2017 以及 image_info_unlabeled2017.json。
- 我的帖子解释了 ms coco。
cococaptions() 可以使用 ms coco 数据集,如下所示。 *这适用于带有captions_train2017.json、instances_train2017.json和person_keypoints_train2017.json的train2017,带有captions_val2017.json、instances_val2017.json和person_keypoints_val2017.json的val2017以及带有image_info_test2017.json和的test2017 image_info_test-dev2017.json:
from torchvision.datasets import CocoCaptions cap_train2017_data = CocoCaptions( root="data/coco/imgs/train2017", annFile="data/coco/anns/trainval2017/captions_train2017.json" ) ins_train2017_data = CocoCaptions( root="data/coco/imgs/train2017", annFile="data/coco/anns/trainval2017/instances_train2017.json" ) pk_train2017_data = CocoCaptions( root="data/coco/imgs/train2017", annFile="data/coco/anns/trainval2017/person_keypoints_train2017.json" ) len(cap_train2017_data), len(ins_train2017_data), len(pk_train2017_data) # (118287, 118287, 118287) cap_val2017_data = CocoCaptions( root="data/coco/imgs/val2017", annFile="data/coco/anns/trainval2017/captions_val2017.json" ) ins_val2017_data = CocoCaptions( root="data/coco/imgs/val2017", annFile="data/coco/anns/trainval2017/instances_val2017.json" ) pk_val2017_data = CocoCaptions( root="data/coco/imgs/val2017", annFile="data/coco/anns/trainval2017/person_keypoints_val2017.json" ) len(cap_val2017_data), len(ins_val2017_data), len(pk_val2017_data) # (5000, 5000, 5000) test2017_data = CocoCaptions( root="data/coco/imgs/test2017", annFile="data/coco/anns/test2017/image_info_test2017.json" ) testdev2017_data = CocoCaptions( root="data/coco/imgs/test2017", annFile="data/coco/anns/test2017/image_info_test-dev2017.json" ) len(test2017_data), len(testdev2017_data) # (40670, 20288) cap_train2017_data[2] # (<PIL.Image.Image image mode=RGB size=640x428>, # ['A flower vase is sitting on a porch stand.', # 'White vase with different colored flowers sitting inside of it. ', # 'a white vase with many flowers on a stage', # 'A white vase filled with different colored flowers.', # 'A vase with red and white flowers outside on a sunny day.']) cap_train2017_data[47] # (<PIL.Image.Image image mode=RGB size=640x427>, # ['A man standing in front of a microwave next to pots and pans.', # 'A man displaying pots and utensils on a wall.', # 'A man stands in a kitchen and motions towards pots and pans. ', # 'a man poses in front of some pots and pans ', # 'A man pointing to pots hanging from a pegboard on a gray wall.']) cap_train2017_data[64] # (<PIL.Image.Image image mode=RGB size=480x640>, # ['A little girl holding wet broccoli in her hand. ', # 'The young child is happily holding a fresh vegetable. ', # 'A little girl holds a hand full of wet broccoli. ', # 'A little girl holds a piece of broccoli towards the camera.', # 'a small kid holds on to some vegetables ']) ins_train2017_data[2] # Error ins_train2017_data[47] # Error ins_train2017_data[67] # Error pk_train2017_data[2] # (<PIL.Image.Image image mode=RGB size=640x428>, []) pk_train2017_data[47] # Error pk_train2017_data[64] # Error cap_val2017_data[2] # (<PIL.Image.Image image mode=RGB size=640x483>, # ['Bedroom scene with a bookcase, blue comforter and window.', # 'A bedroom with a bookshelf full of books.', # 'This room has a bed with blue sheets and a large bookcase', # 'A bed and a mirror in a small room.', # 'a bed room with a neatly made bed a window and a book shelf']) cap_val2017_data[47] # (<PIL.Image.Image image mode=RGB size=640x480>, # ['A group of people cutting a ribbon on a street.', # 'A man uses a pair of big scissors to cut a pink ribbon.', # 'A man cutting a ribbon at a ceremony ', # 'A group of people on the sidewalk watching two young children.', # 'A group of people holding a large pair of scissors to a ribbon.']) cap_val2017_data[64] # (<PIL.Image.Image image mode=RGB size=375x500>, # ['A man and a women posing next to one another in front of a table.', # 'A man and woman hugging in a restaurant', # 'A man and woman standing next to a table.', # 'A happy man and woman pose for a picture.', # 'A man and woman posing for a picture in a sports bar.']) ins_val2017_data[2] # Error ins_val2017_data[47] # Error ins_val2017_data[64] # Error pk_val2017_data[2] # (<PIL.Image.Image image mode=RGB size=640x483>, []) pk_val2017_data[47] # Error pk_val2017_data[64] # Error test2017_data[2] # (<PIL.Image.Image image mode=RGB size=640x427>, []) test2017_data[47] # (<PIL.Image.Image image mode=RGB size=640x406>, []) test2017_data[64] # (<PIL.Image.Image image mode=RGB size=640x427>, []) testdev2017_data[2] # (<PIL.Image.Image image mode=RGB size=640x427>, []) testdev2017_data[47] # (<PIL.Image.Image image mode=RGB size=480x640>, []) testdev2017_data[64] # (<PIL.Image.Image image mode=RGB size=640x480>, []) import matplotlib.pyplot as plt def show_images(data, ims, main_title=None): file = data.root.split('/')[-1] fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(14, 8)) fig.suptitle(t=main_title, y=0.9, fontsize=14) x_crd = 0.02 for i, axis in zip(ims, axes.ravel()): if data[i][1]: im, anns = data[i] axis.imshow(X=im) y_crd = 0.0 for j, ann in enumerate(iterable=anns): text_list = ann.split() if len(text_list) > 9: text = " ".join(text_list[0:10]) + " ..." else: text = " ".join(text_list) plt.figtext(x=x_crd, y=y_crd, fontsize=10, s=f'{j}:\n{text}') y_crd -= 0.06 x_crd += 0.325 if i == 2 and file == "val2017": x_crd += 0.06 elif not data[i][1]: im, _ = data[i] axis.imshow(X=im) fig.tight_layout() plt.show() ims = (2, 47, 64) show_images(data=cap_train2017_data, ims=ims, main_title="cap_train2017_data") show_images(data=cap_val2017_data, ims=ims, main_title="cap_val2017_data") show_images(data=test2017_data, ims=ims, main_title="test2017_data") show_images(data=testdev2017_data, ims=ims, main_title="testdev2017_data")
今天关于《PyTorch 中的 CocoCaptions (2)》的内容介绍就到此结束,如果有什么疑问或者建议,可以在golang学习网公众号下多多回复交流;文中若有不正之处,也希望回复留言以告知!
版本声明
本文转载于:dev.to 如有侵犯,请联系study_golang@163.com删除

- 上一篇
- Win11如何加密文件夹-Win11加密文件夹的方法

- 下一篇
- 通过技术 SEO 最佳实践增强 SaaS 产品开发
查看更多
最新文章
-
- 文章 · python教程 | 5分钟前 |
- Python如何捕获指定异常?
- 269浏览 收藏
-
- 文章 · python教程 | 5分钟前 | Python 模块 导入 `__name__` `__main__`
- Python中`if__name__=='__main__'`的作用解析
- 337浏览 收藏
-
- 文章 · python教程 | 15分钟前 |
- Python数字格式控制:定长高精度不科学计数
- 359浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python字符串反转与大小写转换方法
- 348浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Pandas删除字符串特定部分方法教程
- 330浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- PythonFlask入门教程:轻松掌握Web开发基础
- 285浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- isinstance和type区别详解
- 375浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- MacOS安装Cloupy依赖问题解决方法
- 427浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- Python处理JSON数据全攻略
- 370浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- Python函数定义与使用教程
- 287浏览 收藏
-
- 文章 · python教程 | 3小时前 |
- Matplotlib如何修改特定点颜色
- 383浏览 收藏
-
- 文章 · python教程 | 4小时前 |
- VSCodeGitBash无法使用Conda命令解决方法
- 257浏览 收藏
查看更多
课程推荐
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 514次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 499次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
查看更多
AI推荐
-
- AI Mermaid流程图
- SEO AI Mermaid 流程图工具:基于 Mermaid 语法,AI 辅助,自然语言生成流程图,提升可视化创作效率,适用于开发者、产品经理、教育工作者。
- 634次使用
-
- 搜获客【笔记生成器】
- 搜获客笔记生成器,国内首个聚焦小红书医美垂类的AI文案工具。1500万爆款文案库,行业专属算法,助您高效创作合规、引流的医美笔记,提升运营效率,引爆小红书流量!
- 641次使用
-
- iTerms
- iTerms是一款专业的一站式法律AI工作台,提供AI合同审查、AI合同起草及AI法律问答服务。通过智能问答、深度思考与联网检索,助您高效检索法律法规与司法判例,告别传统模板,实现合同一键起草与在线编辑,大幅提升法律事务处理效率。
- 656次使用
-
- TokenPony
- TokenPony是讯盟科技旗下的AI大模型聚合API平台。通过统一接口接入DeepSeek、Kimi、Qwen等主流模型,支持1024K超长上下文,实现零配置、免部署、极速响应与高性价比的AI应用开发,助力专业用户轻松构建智能服务。
- 725次使用
-
- 迅捷AIPPT
- 迅捷AIPPT是一款高效AI智能PPT生成软件,一键智能生成精美演示文稿。内置海量专业模板、多样风格,支持自定义大纲,助您轻松制作高质量PPT,大幅节省时间。
- 620次使用
查看更多
相关文章
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览