一文剖析 Linux 内核的内存管理
哈喽!今天心血来潮给大家带来了《一文剖析 Linux 内核的内存管理》,想必大家应该对文章都不陌生吧,那么阅读本文就都不会很困难,以下内容主要涉及到,若是你正在学习文章,千万别错过这篇文章~希望能帮助到你!
内存管理是操作系统中至关重要的任务之一,其主要职责是有效地管理物理内存,以支持各个进程的运行。然而,在Linux系统中,引入了虚拟地址的概念,这对内存管理带来了一些新的考虑。
虚拟地址的引入具有重要的作用,其中包括以下几点:
1、物理内存
物理内存的组织
Linux 中内存分为 3 个级别,从下到上依次为:
1、Page: 一个 page 的大小为 4k, Page 是内存的一个最基本的单位。
2、Zone: Zone 中提供了多个队列来管理 page。
Zone分为 3 种
2.1、 ZONE_DMA:用来存放 DMA 读取 IO 设备的数据,内核专用
2.2、 ZONE_NORMAL:用来存放内核的相关数据,内核专用
2.3、 ZONE_HIGHMEM:高端内存,用来存放用户进程数据
3、Node 节点,一个 CPU 对应着一个 Node,一个 Node 包括一个 Zone_DMA、 ZONE_NORMAL、ZONE_HIGHMEM。
同时当一个 CPU 对应的内存用光后,可以申请其他 CPU 对应的内存。

物理内存的分配
Linux将内存分配分为两种:
1、大内存
大内存 利用伙伴系统 分配。

伙伴系统的做法是将 ZONE 中的 Page 分组,然后组装为多个链表。链表中存放的是 页块 的集合。页块对应着有不同的大小,分别为 1、2、4、8 … 1024个页。
当请求 (2i-1 ,2i] 大小的 page 的时候,会直接请求 2i 个页, 如果对应的链表中有对应的页块,就直接分配。如果对应的链表没有,就往上找 2i+1,如果 2i+1 存在,就将其分为 2 个 2i 页块,将其中 1 个 2i 加入到对应的链表中,将另外一个分配出去。
例如,要请求一个 128 个页的页块时,先检查 128 个页的页块链表是否有空闲块。如果没有,则查 256 个
的页块链表;如果有空闲块的话,则将 256 个页的页块分成两份,一份使用,一份插入 128 个页的页块链表中。如果还是没有,就查 512 个页的页块链表;如果有的话,就分裂为 128、128、256 三个页块,一个 128 的使用,剩余两个插入对应页块链表。
2、小内存分配
小内存分配利用 slub 分配,比如对象等数据 slub 就是 将几个页单独拎出来作为缓存,里面维护了链表。每次直接从链表中获取对应的内存,用完之后也不用清空,就直接挂到链表上,然后等待下次利用。

2、如何组织虚拟地址
虚拟地址对应的是虚拟空间,虚拟空间只不过是一个虚拟地址的集合,用来映射物理内存。

虚拟空间分为 用户态 和 内核态 。
32位系统中 将虚拟空间按照 1:3 的比例分配给 内核态 和 用户态。
64位系统中 分别给 内核态 和 用户态 分配了 128T。
用户态结构

每个进程 都会 对应一个 用户态虚拟空间, 里面存放了 Text(代码)的内存虚拟地址范围、 Data(数据)的内存虚拟地址范围、BSS(全局变量)的内存虚拟地址范围、堆的虚拟地址范围、栈的虚拟地址范围,以及mmap 内存映射区。
其中 mmap 用于申请动态内存的时候的映射,堆和栈都是动态变化的。
一个进程对应的用户态中的 各个方面的虚拟地址信息都通过一个 struct 来存储在内存中,当创建进程的时候会为其分配内存存储对应的虚拟地址信息。
内核态结构

Linux 的内核程序共用一个内核态虚拟空间。其中分为了以下几部分:
1、直接映射区
896M,内核空间直接映射到对应的ZONE_DMA和ZONE_NORMAL中。为什么叫做直接映射呢?逻辑地址 直接 减去对应的差值就可以得到对应的物理地址。固定死了。
2、动态映射
为什么要引入动态映射呢?因为所有物理内存的分配都需要内核程序进行申请,用户进程没有这个权限。所以内核空间一定要能映射到所有的物理内存地址。
那么如果都采用直接映射的话,1G大小逻辑地址的内核空间只能映射1G大小的物理内存。
所以引入了动态映射,动态映射就是 内核空间的逻辑地址可以映射到 物理内存中的ZONE_HIGHMEM(高端内存)中的任何一个地址,并且在对应的物理内存使用完之后,可以再映射其他物理内存地址。
动态映射分为三种:
1、动态内存映射: 使用完对应的物理内存后,就可以映射其他物理内存了。
2、永久内存映射: 一个虚拟地址只能映射一个物理地址。如果需要映射其他物理地址,需要解绑。
3、固定内存映射: 只能被某些特定的函数来调用引用物理地址。
动态内存映射和直接映射的区别
动态映射和直接映射的区别就是逻辑地址到物理地址的转化规则。
直接映射
直接映射的规则是死的,一个逻辑地址对应的物理地址是固定的。通过逻辑地址加或者减去一个数,就可以得到对应的物理地址。
动态映射
动态映射是动态的绑定,每个逻辑地址对应的物理地址是动态的,通过页表进行查询。
用户空间映射:
用户空间采用动态映射,每个虚拟地址可以被映射到一个物理地址,映射到ZONE_HIGHMEM。
为什么用户空间不采用直接映射呢?
因为物理内存是多个进程所有的,每个进程都有一个用户空间。如果采用直接映射的话,对应的物理地址是会冲突的。其用户空间的逻辑地址大小都为 3G,所以存在逻辑地址相同,但是对应的物理地址不同。需要通过页表来转化,一个进程会对应一个页表。
3、如何将虚拟地址映射到物理内存
虚拟地址通过 页表 将 虚拟地址 转化为 物理地址,每个进程都对应着一个页表,内核只有一个页表。
虚拟空间 和 物理内存 都按照 4k 来分页,一个虚拟空间中的页 和 物理内存中页 是 一一对应的。
页表映射

如上图所示,将虚拟地址中的页号 通过页表转化为 对应的物理页号,然后通过页内偏移量 就可以得到对应的 物理地址了。

但是 1 个进程就需要一个页表,一个 4G 的内存条,就需要 1M 个页表记录来描述,假如 1 个 页表记录需要 4个字节,那么就需要 4MB。而且页表记录是通过下标来对应的,通过虚拟页号来乘以对应的页表项大小来计算得到对应的地址的。
所以 Linux 将 4M 分为 1K 个 4K, 一个 4K 对应着一个 page,用来存储对应的真正的页表记录。将 1K 个 page 分开存放,就不要求连续的 4M 了。
如果将 4M 分成 1K 个离散的 page 的话,怎么虚拟地址对应的页表号呢?
利用指针,存储 1K 个地址,分别指向这 1K 个 page, 地址的大小为 4 个字节,也就是32位,完全可以表示整个内存的地址范围。
1K * 4个字节,正好是一个 page 4k,所以 也就是利用 1 个 page来存储对应的页表记录索引。
所以 我们的虚拟地址寻找过程如下:
1、找到对应的页表记录索引位置,因为有 1K 个索引,所以用 10 位就可以表示了
2、通过索引可以找到对应的真正的页表地址,对应的有 1K 个页表记录,所以用 10 位就可以表示了
3、1个页有 4K,通过 12 位就可以表示其页内偏移量了。
所以虚拟地址被分为了三部分:
1、10位 表示索引偏移
2、10位 表示页表记录偏移
3、 12位 表示页内偏移
虽然这种方式增加了索引项,进一步增加了内存,但是减少了连续内存的使用,通过离散的内存就可以存储页表。
这是对于32位系统,而 64 位系统采用了5级页表。

映射流程图

用户态申请内存时,只会申请对应的虚拟地址,不会直接为其分配物理内存,而是等到真正访问内存的时候,产生缺页中断,然后内核才会为其分配,然后为其建立映射,也就是建立对应的页表项。
TLB
TLB 就是一个缓存,放在 CPU 中。用来将虚拟地址和对应的物理地址进行缓存。当查询对应的物理地址的时候,首先查询 TLB,如果TLB中存在对应的记录,就直接返回。如果不存在,就再去查询页表。
虚拟内存
虚拟内存 指的是 将硬盘中划出一段 swap 分区 当作 虚拟的内存,用来存放内存中暂时用不到的内存页,等到需要的时候再从 swap 分区中 将对应的内存页调入到 内存中。硬盘此时相当于一个虚拟的内存。
从逻辑上能够运行更大内存的程序,因为程序运行的时候并不需要把所有数据都加载到内存中,只需要将当前运行必要的相关程序和数据加载到内存中就可以了,当需要其他数据和程序的时候,再将其调入。
相较于真正的内存加载,虚拟内存需要将数据在内存和磁盘中不断切换,这是一个耗时的操作,所以速度比不上真正的内存加载。
总结
虚拟空间 和 物理内存 都分为 内核空间 和 用户空间。
虚拟地址需要通过页表转化为物理地址,然后才能访问。
用户虚拟空间 只能映射 物理内存中的用户内存,无法映射到物理内存中的内核内存,也就是说,用户进程只能操作用户内存。
内核空间 只能被 内核 申请使用,用户进程只能操作用户空间的物理内存和虚拟空间。
当用户进程 调用系统调用的时候,会将其对应的代码和数据运行在内核空间中。
所以当调用 内核空间 读取文件或者网络数据的时候,首先会将数据拷贝到内存空间,然后在将数据从内核空间拷贝到用户空间。因为 用户进程不能访问内核空间。
理论要掌握,实操不能落!以上关于《一文剖析 Linux 内核的内存管理》的详细介绍,大家都掌握了吧!如果想要继续提升自己的能力,那么就来关注golang学习网公众号吧!

- 上一篇
- 2024 年观影人次破 10 亿:平均票价 42.1 元,总场次 1.43 亿场

- 下一篇
- 怎么压缩图片大小?3种方法实现无损压缩或者有损压缩
-
- 文章 · linux | 4小时前 |
- LinuxAliases命令提升效率终极秘籍
- 277浏览 收藏
-
- 文章 · linux | 5小时前 |
- LinuxDHCP活动监控工具及方法推荐
- 429浏览 收藏
-
- 文章 · linux | 6小时前 |
- OpenSSL在Debian故障排除技巧全攻略
- 301浏览 收藏
-
- 文章 · linux | 6小时前 |
- Linuxcmatrix数据备份的实现技巧
- 121浏览 收藏
-
- 文章 · linux | 7小时前 |
- Linuxcmatrix命令使用技巧及原理揭秘
- 375浏览 收藏
-
- 文章 · linux | 8小时前 |
- Linux上Swagger工具提升API性能指南
- 287浏览 收藏
-
- 文章 · linux | 9小时前 |
- Linux下Postman环境变量设置攻略
- 154浏览 收藏
-
- 文章 · linux | 10小时前 |
- nginx缓存策略设置详解及优化技巧
- 100浏览 收藏
-
- 文章 · linux | 10小时前 |
- Linux中用yum查找软件版本的具体方法
- 192浏览 收藏
-
- 文章 · linux | 11小时前 |
- Linux系统Filezilla更新教程及最新版本下载
- 395浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 协启动
- SEO摘要协启动(XieQiDong Chatbot)是由深圳协启动传媒有限公司运营的AI智能服务平台,提供多模型支持的对话服务、文档处理和图像生成工具,旨在提升用户内容创作与信息处理效率。平台支持订阅制付费,适合个人及企业用户,满足日常聊天、文案生成、学习辅助等需求。
- 9次使用
-
- Brev AI
- 探索Brev AI,一个无需注册即可免费使用的AI音乐创作平台,提供多功能工具如音乐生成、去人声、歌词创作等,适用于内容创作、商业配乐和个人创作,满足您的音乐需求。
- 9次使用
-
- AI音乐实验室
- AI音乐实验室(https://www.aimusiclab.cn/)是一款专注于AI音乐创作的平台,提供从作曲到分轨的全流程工具,降低音乐创作门槛。免费与付费结合,适用于音乐爱好者、独立音乐人及内容创作者,助力提升创作效率。
- 9次使用
-
- PixPro
- SEO摘要PixPro是一款专注于网页端AI图像处理的平台,提供高效、多功能的图像处理解决方案。通过AI擦除、扩图、抠图、裁切和压缩等功能,PixPro帮助开发者和企业实现“上传即处理”的智能化升级,适用于电商、社交媒体等高频图像处理场景。了解更多PixPro的核心功能和应用案例,提升您的图像处理效率。
- 9次使用
-
- EasyMusic
- EasyMusic.ai是一款面向全场景音乐创作需求的AI音乐生成平台,提供“零门槛创作 专业级输出”的服务。无论你是内容创作者、音乐人、游戏开发者还是教育工作者,都能通过EasyMusic.ai快速生成高品质音乐,满足短视频、游戏、广告、教育等多元需求。平台支持一键生成与深度定制,积累了超10万创作者,生成超100万首音乐作品,用户满意度达99%。
- 12次使用
-
- 命令行工具:应对Linux服务器安全挑战的利器
- 2023-10-04 501浏览
-
- 如何使用Docker进行容器的水平伸缩和负载均衡
- 2023-11-07 501浏览
-
- linux .profile的作用是什么
- 2024-04-07 501浏览
-
- 如何解决s权限位引发postfix及crontab异常
- 2024-11-21 501浏览
-
- 如何通过脚本自动化Linux上的K8S安装
- 2025-02-17 501浏览