挤入 PyTorch
来源:dev.to
2025-01-06 22:51:10
0浏览
收藏
IT行业相对于一般传统行业,发展更新速度更快,一旦停止了学习,很快就会被行业所淘汰。所以我们需要踏踏实实的不断学习,精进自己的技术,尤其是初学者。今天golang学习网给大家整理了《挤入 PyTorch》,聊聊,我们一起来看看吧!
请我喝杯咖啡☕
*我的帖子解释了 unsqueeze()。
squeeze() 可以从零个或多个元素的 0d 或多个 d 张量中获取删除零个或多个维度的零个或多个元素的 0d 或多个 d 张量,如果大小为 1,如下所示:
*备忘录:
- 挤压()可以与火炬或张量一起使用。
- 第一个参数(输入)使用 torch 或使用张量(必需类型:int、float、complex 或 bool 的张量)。
- 带有 torch 的第二个参数或带有张量的第一个或多个参数是暗淡的(可选类型:int、int 元组或 int 列表):
*备注:
- 每个数字必须是唯一的。
- 它可以删除特定的零个或多个尺寸为1的维度。
- 如果大小不为 1,即使设置零个或多个维度也不会被删除。
import torch
my_tensor = torch.tensor([[[[0], [1]],
[[2], [3]],
[[4], [5]]]])
torch.squeeze(input=my_tensor)
my_tensor.squeeze()
torch.squeeze(input=my_tensor, dim=(0, 3))
my_tensor.squeeze(dim=(0, 3))
my_tensor.squeeze(0, 3)
torch.squeeze(input=my_tensor, dim=(0, 1, 3))
my_tensor.squeeze(dim=(0, 1, 3))
my_tensor.squeeze(0, 1, 3)
etc.
torch.squeeze(input=my_tensor, dim=(0, 1, 2, 3))
my_tensor.squeeze(dim=(0, 1, 2, 3))
my_tensor.squeeze(0, 1, 2, 3)
etc.
# tensor([[0, 1],
# [2, 3],
# [4, 5]])
torch.squeeze(input=my_tensor, dim=0)
torch.squeeze(input=my_tensor, dim=-4)
torch.squeeze(input=my_tensor, dim=(0,))
torch.squeeze(input=my_tensor, dim=(-4,))
torch.squeeze(input=my_tensor, dim=(0, 1))
torch.squeeze(input=my_tensor, dim=(0, 2))
torch.squeeze(input=my_tensor, dim=(0, -2))
torch.squeeze(input=my_tensor, dim=(0, -3))
torch.squeeze(input=my_tensor, dim=(1, 0))
etc.
torch.squeeze(input=my_tensor, dim=(0, 1, 2))
etc.
# tensor([[[0], [1]],
# [[2], [3]],
# [[4], [5]]])
torch.squeeze(input=my_tensor, dim=1)
torch.squeeze(input=my_tensor, dim=2)
torch.squeeze(input=my_tensor, dim=-2)
torch.squeeze(input=my_tensor, dim=-3)
torch.squeeze(input=my_tensor, dim=())
torch.squeeze(input=my_tensor, dim=(1,))
torch.squeeze(input=my_tensor, dim=(2,))
torch.squeeze(input=my_tensor, dim=(-2,))
torch.squeeze(input=my_tensor, dim=(-3,))
torch.squeeze(input=my_tensor, dim=(1, 2))
etc.
# tensor([[[[0], [1]],
# [[2], [3]],
# [[4], [5]]]])
torch.squeeze(input=my_tensor, dim=3)
torch.squeeze(input=my_tensor, dim=-1)
torch.squeeze(input=my_tensor, dim=(3,))
torch.squeeze(input=my_tensor, dim=(-1,))
torch.squeeze(input=my_tensor, dim=(1, 3))
torch.squeeze(input=my_tensor, dim=(1, -1))
torch.squeeze(input=my_tensor, dim=(2, 3))
torch.squeeze(input=my_tensor, dim=(2, -1))
torch.squeeze(input=my_tensor, dim=(3, 1))
etc.
torch.squeeze(input=my_tensor, dim=(1, 2, 3))
etc.
# tensor([[[0, 1],
# [2, 3],
# [4, 5]]])
my_tensor = torch.tensor([[[[0.], [1.]],
[[2.], [3.]],
[[4.], [5.]]]])
torch.squeeze(input=my_tensor)
# tensor([[0., 1.],
# [2., 3.],
# [4., 5.]])
my_tensor = torch.tensor([[[[0.+0.j], [1.+0.j]],
[[2.+0.j], [3.+0.j]],
[[4.+0.j], [5.+0.j]]]])
torch.squeeze(input=my_tensor)
# tensor([[0.+0.j, 1.+0.j],
# [2.+0.j, 3.+0.j],
# [4.+0.j, 5.+0.j]])
my_tensor = torch.tensor([[[[True], [False]],
[[False], [True]],
[[True], [False]]]])
torch.squeeze(input=my_tensor)
# tensor([[True, False],
# [False, True],
# [True, False]])
今天关于《挤入 PyTorch》的内容介绍就到此结束,如果有什么疑问或者建议,可以在golang学习网公众号下多多回复交流;文中若有不正之处,也希望回复留言以告知!
版本声明
本文转载于:dev.to 如有侵犯,请联系study_golang@163.com删除
Laravel 路线替代方案
- 上一篇
- Laravel 路线替代方案
- 下一篇
- Our World in Data 机构:中国过去 15 年间二氧化硫排放量减少三分之二以上
查看更多
最新文章
-
- 文章 · python教程 | 12分钟前 |
- VSCodePython开发全流程详解
- 348浏览 收藏
-
- 文章 · python教程 | 15分钟前 | 模块 包 代码复用 import Python函数模块化
- Python函数模块化技巧与实践解析
- 391浏览 收藏
-
- 文章 · python教程 | 29分钟前 | Flask web开发
- Flask框架入门教程:Web开发实战指南
- 324浏览 收藏
-
- 文章 · python教程 | 45分钟前 |
- Mako模板使用方法与实例详解
- 292浏览 收藏
-
- 文章 · python教程 | 50分钟前 |
- Pythonpdb调试方法详解
- 109浏览 收藏
-
- 文章 · python教程 | 58分钟前 |
- Pyodide集成BasthonTurtle教程与SVG渲染详解
- 447浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Pythontkinter添加控件技巧分享
- 148浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- KBar快捷键注册失败怎么解决
- 392浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python多目录导入技巧与实战解析
- 423浏览 收藏
查看更多
课程推荐
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 500次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 485次学习
查看更多
AI推荐
-
- ChatExcel酷表
- ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
- 3176次使用
-
- Any绘本
- 探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
- 3388次使用
-
- 可赞AI
- 可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
- 3417次使用
-
- 星月写作
- 星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
- 4522次使用
-
- MagicLight
- MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
- 3796次使用
查看更多
相关文章
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览

