当前位置:首页 > 文章列表 > 文章 > python教程 > PyTorch 中的 atleast_

PyTorch 中的 atleast_

来源:dev.to 2024-12-31 17:48:39 0浏览 收藏

一分耕耘,一分收获!既然打开了这篇文章《PyTorch 中的 atleast_》,就坚持看下去吧!文中内容包含等等知识点...希望你能在阅读本文后,能真真实实学到知识或者帮你解决心中的疑惑,也欢迎大佬或者新人朋友们多留言评论,多给建议!谢谢!

请我喝杯咖啡☕

*备忘录:

  • 我的帖子解释了 atleast_2d()。
  • 我的帖子解释了 atleast_3d()。

atleast_1d()只需将一个或多个0d或多个d张量从一个或多个0d或多个d张量更改为一个或多个1d张量即可获得零个或多个元素的一个或多个1d或多个d张量的视图零个或多个元素,如下所示:

*备忘录:

  • atleast_1d() 可以与 torch 一起使用,但不能与张量一起使用。
  • torch 的第一个或多个参数是*张量(必需类型:int、float、complex 或 bool 的张量或元组或 int、float、complex 或 bool 的张量列表): *备注:
    • 如果设置多个张量,则返回一个张量元组,否则返回一个张量。
    • 不要使用任何关键字,例如 *tensors=、tensor 或 input。
  • 不设置参数会返回一个空元组。
import torch

tensor0 = torch.tensor(2) # 0D tensor

torch.atleast_1d(tensor0)
# tensor([2])

tensor0 = torch.tensor(2) # 0D tensor
tensor1 = torch.tensor([2, 7, 4]) # 1D tensor
tensor2 = torch.tensor([[2, 7, 4], [8, 3, 2]]) # 2D tensor
tensor3 = torch.tensor([[[2, 7, 4], [8, 3, 2]], # 3D tensor
                        [[5, 0, 8], [3, 6, 1]]])
tensor4 = torch.tensor([[[[2, 7, 4], [8, 3, 2]], # 4D tensor
                         [[5, 0, 8], [3, 6, 1]]],
                        [[[9, 4, 7], [1, 0, 5]],
                         [[6, 7, 4], [2, 1, 9]]]])
torch.atleast_1d(tensor0, tensor1, tensor2, tensor3, tensor4)
torch.atleast_1d((tensor0, tensor1, tensor2, tensor3, tensor4))
# (tensor([2]),
#  tensor([2, 7, 4]),
#  tensor([[2, 7, 4], [8, 3, 2]]),
#  tensor([[[2, 7, 4], [8, 3, 2]],
#          [[5, 0, 8], [3, 6, 1]]]),
#  tensor([[[[2, 7, 4], [8, 3, 2]],
#           [[5, 0, 8], [3, 6, 1]]],
#          [[[9, 4, 7], [1, 0, 5]],
#           [[6, 7, 4], [2, 1, 9]]]]))

tensor0 = torch.tensor(2) # 0D tensor
tensor1 = torch.tensor([2, 7, 4]) # 1D tensor
tensor2 = torch.tensor([[2., 7., 4.], # 2D tensor
                        [8., 3., 2.]])
tensor3 = torch.tensor([[[2.+0.j, 7.+0.j, 4.+0.j], # 3D tensor
                         [8.+0.j, 3.+0.j, 2.+0.j]],
                        [[5.+0.j, 0.+0.j, 8.+0.j],
                         [3.+0.j, 6.+0.j, 1.+0.j]]])
tensor4 = torch.tensor([[[[True, False, True], [False, True, False]],
                         [[True, False, True], [False, True, False]]],
                        [[[True, False, True], [False, True, False]],
                         [[True, False, True], [False, True, False]]]])
                       # 4D tensor
torch.atleast_1d(tensor0, tensor1, tensor2, tensor3, tensor4)
# (tensor([2]),
#  tensor([2, 7, 4]),
#  tensor([[2., 7., 4.],
#          [8., 3., 2.]]),
#  tensor([[[2.+0.j, 7.+0.j, 4.+0.j],
#           [8.+0.j, 3.+0.j, 2.+0.j]],
#          [[5.+0.j, 0.+0.j, 8.+0.j],
#           [3.+0.j, 6.+0.j, 1.+0.j]]]),
#  tensor([[[[True, False, True], [False, True, False]],
#           [[True, False, True], [False, True, False]]],
#          [[[True, False, True], [False, True, False]],
#           [[True, False, True], [False, True, False]]]]))

torch.atleast_1d()
# ()

今天带大家了解了的相关知识,希望对你有所帮助;关于文章的技术知识我们会一点点深入介绍,欢迎大家关注golang学习网公众号,一起学习编程~

版本声明
本文转载于:dev.to 如有侵犯,请联系study_golang@163.com删除
轻松退货:全面解析苹果电脑退换政策与实用指南轻松退货:全面解析苹果电脑退换政策与实用指南
上一篇
轻松退货:全面解析苹果电脑退换政策与实用指南
js navigator.appname能获取版本吗
下一篇
js navigator.appname能获取版本吗
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 笔灵AI生成答辩PPT:高效制作学术与职场PPT的利器
    笔灵AI生成答辩PPT
    探索笔灵AI生成答辩PPT的强大功能,快速制作高质量答辩PPT。精准内容提取、多样模板匹配、数据可视化、配套自述稿生成,让您的学术和职场展示更加专业与高效。
    23次使用
  • 知网AIGC检测服务系统:精准识别学术文本中的AI生成内容
    知网AIGC检测服务系统
    知网AIGC检测服务系统,专注于检测学术文本中的疑似AI生成内容。依托知网海量高质量文献资源,结合先进的“知识增强AIGC检测技术”,系统能够从语言模式和语义逻辑两方面精准识别AI生成内容,适用于学术研究、教育和企业领域,确保文本的真实性和原创性。
    35次使用
  • AIGC检测服务:AIbiye助力确保论文原创性
    AIGC检测-Aibiye
    AIbiye官网推出的AIGC检测服务,专注于检测ChatGPT、Gemini、Claude等AIGC工具生成的文本,帮助用户确保论文的原创性和学术规范。支持txt和doc(x)格式,检测范围为论文正文,提供高准确性和便捷的用户体验。
    37次使用
  • 易笔AI论文平台:快速生成高质量学术论文的利器
    易笔AI论文
    易笔AI论文平台提供自动写作、格式校对、查重检测等功能,支持多种学术领域的论文生成。价格优惠,界面友好,操作简便,适用于学术研究者、学生及论文辅导机构。
    46次使用
  • 笔启AI论文写作平台:多类型论文生成与多语言支持
    笔启AI论文写作平台
    笔启AI论文写作平台提供多类型论文生成服务,支持多语言写作,满足学术研究者、学生和职场人士的需求。平台采用AI 4.0版本,确保论文质量和原创性,并提供查重保障和隐私保护。
    40次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码