当前位置:首页 > 文章列表 > 文章 > python教程 > 掌握 Python 并发编程:利用先进技术提升性能

掌握 Python 并发编程:利用先进技术提升性能

来源:dev.to 2024-12-20 18:31:01 0浏览 收藏

目前golang学习网上已经有很多关于文章的文章了,自己在初次阅读这些文章中,也见识到了很多学习思路;那么本文《掌握 Python 并发编程:利用先进技术提升性能》,也希望能帮助到大家,如果阅读完后真的对你学习文章有帮助,欢迎动动手指,评论留言并分享~

掌握 Python 并发编程:利用先进技术提升性能

python 的并发编程能力已经显着发展,为开发人员提供了编写高效、并行代码的强大工具。我花了相当多的时间探索这些先进技术,很高兴与您分享我的见解。

使用 asyncio 进行异步编程是 i/o 密集型任务的游戏规则改变者。它允许我们编写非阻塞代码,可以同时处理多个操作,而无需线程开销。下面是一个简单的示例,说明如何使用 asyncio 同时从多个 url 获取数据:

import asyncio
import aiohttp

async def fetch_url(session, url):
    async with session.get(url) as response:
        return await response.text()

async def main():
    urls = ['http://example.com', 'http://example.org', 'http://example.net']
    async with aiohttp.clientsession() as session:
        tasks = [fetch_url(session, url) for url in urls]
        results = await asyncio.gather(*tasks)
        for url, result in zip(urls, results):
            print(f"content length of {url}: {len(result)}")

asyncio.run(main())

这段代码演示了我们如何创建多个协程来同时从不同的 url 获取数据。 asyncio.gather() 函数允许我们等待所有协程完成并收集它们的结果。

虽然 asyncio 非常适合 i/o 密集型任务,但它不适合 cpu 密集型操作。为此,我们转向concurrent.futures模块,它提供了threadpoolexecutor和processpoolexecutor。 threadpoolexecutor 非常适合不释放 gil 的 i/o 密集型任务,而 processpoolexecutor 非常适合 cpu 密集型任务。

下面是使用 threadpoolexecutor 并发下载多个文件的示例:

import concurrent.futures
import requests

def download_file(url):
    response = requests.get(url)
    filename = url.split('/')[-1]
    with open(filename, 'wb') as f:
        f.write(response.content)
    return f"downloaded {filename}"

urls = [
    'https://example.com/file1.pdf',
    'https://example.com/file2.pdf',
    'https://example.com/file3.pdf'
]

with concurrent.futures.threadpoolexecutor(max_workers=3) as executor:
    future_to_url = {executor.submit(download_file, url): url for url in urls}
    for future in concurrent.futures.as_completed(future_to_url):
        url = future_to_url[future]
        try:
            data = future.result()
        except exception as exc:
            print(f"{url} generated an exception: {exc}")
        else:
            print(data)

此代码创建一个包含三个工作线程的线程池,并为每个 url 提交一个下载任务。 as_completed() 函数允许我们在结果可用时对其进行处理,而不是等待所有任务完成。

对于 cpu 密集型任务,我们可以使用 processpoolexecutor 来利用多个 cpu 核心。这是并行计算素数的示例:

import concurrent.futures
import math

def is_prime(n):
    if n < 2:
        return false
    for i in range(2, int(math.sqrt(n)) + 1):
        if n % i == 0:
            return false
    return true

def find_primes(start, end):
    return [n for n in range(start, end) if is_prime(n)]

ranges = [(1, 25000), (25001, 50000), (50001, 75000), (75001, 100000)]

with concurrent.futures.processpoolexecutor() as executor:
    results = executor.map(lambda r: find_primes(*r), ranges)

all_primes = [prime for sublist in results for prime in sublist]
print(f"found {len(all_primes)} prime numbers")

此代码将查找素数的任务分为四个范围,并使用单独的 python 进程并行处理它们。 map() 函数将 find_primes() 函数应用于每个范围并收集结果。

当使用多个进程时,我们经常需要在它们之间共享数据。多处理模块为此提供了多种选项,包括共享内存和队列。这是使用共享内存数组的示例:

from multiprocessing import process, array
import numpy as np

def worker(shared_array, start, end):
    for i in range(start, end):
        shared_array[i] = i * i

if __name__ == '__main__':
    size = 10000000
    shared_array = array('d', size)

    # create 4 processes
    processes = []
    chunk_size = size // 4
    for i in range(4):
        start = i * chunk_size
        end = start + chunk_size if i < 3 else size
        p = process(target=worker, args=(shared_array, start, end))
        processes.append(p)
        p.start()

    # wait for all processes to finish
    for p in processes:
        p.join()

    # convert shared array to numpy array for easy manipulation
    np_array = np.frombuffer(shared_array.get_obj())
    print(f"sum of squares: {np_array.sum()}")

此代码创建一个共享内存数组,并使用四个进程并行计算数字的平方。共享数组允许所有进程写入相同的内存空间,避免了进程间通信的需要。

虽然这些技术很强大,但它们也面临着一系列挑战。竞争条件、死锁和过多的上下文切换都会影响性能和正确性。仔细设计并发代码并在必要时使用适当的同步原语至关重要。

例如,当多个线程或进程需要访问共享资源时,我们可以使用lock来保证线程安全:

from threading import lock, thread

class counter:
    def __init__(self):
        self.count = 0
        self.lock = lock()

    def increment(self):
        with self.lock:
            self.count += 1

def worker(counter, num_increments):
    for _ in range(num_increments):
        counter.increment()

counter = counter()
threads = []
for _ in range(10):
    t = thread(target=worker, args=(counter, 100000))
    threads.append(t)
    t.start()

for t in threads:
    t.join()

print(f"final count: {counter.count}")

此代码演示了当多个线程同时递增共享计数器时,如何使用锁来保护共享计数器免受竞争条件的影响。

另一种先进技术是使用信号量来控制对有限资源的访问。下面是限制并发网络连接数的示例:

import asyncio
import aiohttp
from asyncio import semaphore

async def fetch_url(url, semaphore):
    async with semaphore:
        async with aiohttp.clientsession() as session:
            async with session.get(url) as response:
                return await response.text()

async def main():
    urls = [f'http://example.com/{i}' for i in range(100)]
    semaphore = semaphore(10)  # limit to 10 concurrent connections
    tasks = [fetch_url(url, semaphore) for url in urls]
    results = await asyncio.gather(*tasks)
    print(f"fetched {len(results)} urls")

asyncio.run(main())

此代码使用信号量将并发网络连接数限制为 10,防止网络或服务器不堪重负。

使用并发代码时,正确处理异常也很重要。 asyncio 模块为 asyncio.gather() 函数提供了一个 return_exceptions 参数,该参数对此很有用:

import asyncio

async def risky_operation(i):
    if i % 2 == 0:
        raise valueerror(f"even number not allowed: {i}")
    await asyncio.sleep(1)
    return i

async def main():
    tasks = [risky_operation(i) for i in range(10)]
    results = await asyncio.gather(*tasks, return_exceptions=true)
    for result in results:
        if isinstance(result, exception):
            print(f"got an exception: {result}")
        else:
            print(f"got a result: {result}")

asyncio.run(main())

此代码演示了如何在不停止其他任务执行的情况下处理并发任务中的异常。

随着我们深入研究并发编程,我们会遇到更高级的概念,例如事件循环和协程链。这是一个演示如何链接协程的示例:

import asyncio

async def fetch_data(url):
    print(f"fetching data from {url}")
    await asyncio.sleep(2)  # simulate network delay
    return f"data from {url}"

async def process_data(data):
    print(f"processing {data}")
    await asyncio.sleep(1)  # simulate processing time
    return f"processed {data}"

async def save_result(result):
    print(f"saving {result}")
    await asyncio.sleep(0.5)  # simulate saving delay
    return f"saved {result}"

async def fetch_process_save(url):
    data = await fetch_data(url)
    processed = await process_data(data)
    return await save_result(processed)

async def main():
    urls = ['http://example.com', 'http://example.org', 'http://example.net']
    tasks = [fetch_process_save(url) for url in urls]
    results = await asyncio.gather(*tasks)
    for result in results:
        print(result)

asyncio.run(main())

此代码链接了三个协程(fetch_data、process_data 和 save_result),为每个 url 创建一个管道。然后 asyncio.gather() 函数同时运行这些管道。

在处理长时间运行的任务时,通常需要实现取消和超时机制。这是一个演示两者的示例:

import asyncio

async def long_running_task(n):
    print(f"Starting long task {n}")
    try:
        await asyncio.sleep(10)
        print(f"Task {n} completed")
        return n
    except asyncio.CancelledError:
        print(f"Task {n} was cancelled")
        raise

async def main():
    tasks = [long_running_task(i) for i in range(5)]
    try:
        results = await asyncio.wait_for(asyncio.gather(*tasks), timeout=5)
    except asyncio.TimeoutError:
        print("Operation timed out, cancelling remaining tasks")
        for task in tasks:
            task.cancel()
        # Wait for all tasks to finish (they'll raise CancelledError)
        await asyncio.gather(*tasks, return_exceptions=True)
    else:
        print(f"All tasks completed successfully: {results}")

asyncio.run(main())

此代码启动五个长时间运行的任务,但设置所有任务的超时时间为 5 秒才能完成。如果达到超时,则会取消所有剩余任务。

总之,python 的并发编程功能为编写高效的并行代码提供了广泛的工具和技术。从使用 asyncio 的异步编程到 cpu 密集型任务的多处理,这些先进技术可以显着提高应用程序的性能。然而,了解基本概念、为每项任务选择正确的工具以及仔细管理共享资源和潜在的竞争条件至关重要。通过实践和精心设计,我们可以利用 python 中并发编程的全部功能来构建快速、可扩展且响应迅速的应用程序。


我们的创作

一定要看看我们的创作:

投资者中心 | 智能生活 | 时代与回声 | 令人费解的谜团 | 印度教 | 精英开发 | js学校


我们在媒体上

科技考拉洞察 | 时代与回响世界 | 投资者中央媒体 | 令人费解的谜团 | 科学与时代媒介 | 现代印度教

文中关于的知识介绍,希望对你的学习有所帮助!若是受益匪浅,那就动动鼠标收藏这篇《掌握 Python 并发编程:利用先进技术提升性能》文章吧,也可关注golang学习网公众号了解相关技术文章。

版本声明
本文转载于:dev.to 如有侵犯,请联系study_golang@163.com删除
三星指控印度反垄断机构拘留员工、非法获取数据三星指控印度反垄断机构拘留员工、非法获取数据
上一篇
三星指控印度反垄断机构拘留员工、非法获取数据
如何使用Vue将两张图片融合为一张并实现跨屏幕自适应?
下一篇
如何使用Vue将两张图片融合为一张并实现跨屏幕自适应?
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • AI Make Song:零门槛AI音乐创作平台,助你轻松制作个性化音乐
    AI Make Song
    AI Make Song是一款革命性的AI音乐生成平台,提供文本和歌词转音乐的双模式输入,支持多语言及商业友好版权体系。无论你是音乐爱好者、内容创作者还是广告从业者,都能在这里实现“用文字创造音乐”的梦想。平台已生成超百万首原创音乐,覆盖全球20个国家,用户满意度高达95%。
    12次使用
  • SongGenerator.io:零门槛AI音乐生成器,快速创作高质量音乐
    SongGenerator
    探索SongGenerator.io,零门槛、全免费的AI音乐生成器。无需注册,通过简单文本输入即可生成多风格音乐,适用于内容创作者、音乐爱好者和教育工作者。日均生成量超10万次,全球50国家用户信赖。
    11次使用
  •  BeArt AI换脸:免费在线工具,轻松实现照片、视频、GIF换脸
    BeArt AI换脸
    探索BeArt AI换脸工具,免费在线使用,无需下载软件,即可对照片、视频和GIF进行高质量换脸。体验快速、流畅、无水印的换脸效果,适用于娱乐创作、影视制作、广告营销等多种场景。
    10次使用
  • SEO标题协启动:AI驱动的智能对话与内容生成平台 - 提升创作效率
    协启动
    SEO摘要协启动(XieQiDong Chatbot)是由深圳协启动传媒有限公司运营的AI智能服务平台,提供多模型支持的对话服务、文档处理和图像生成工具,旨在提升用户内容创作与信息处理效率。平台支持订阅制付费,适合个人及企业用户,满足日常聊天、文案生成、学习辅助等需求。
    16次使用
  • Brev AI:零注册门槛的全功能免费AI音乐创作平台
    Brev AI
    探索Brev AI,一个无需注册即可免费使用的AI音乐创作平台,提供多功能工具如音乐生成、去人声、歌词创作等,适用于内容创作、商业配乐和个人创作,满足您的音乐需求。
    16次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码