当前位置:首页 > 文章列表 > 文章 > python教程 > Vanishing & Exploding Gradient Problem & Dying ReLU Problem

Vanishing & Exploding Gradient Problem & Dying ReLU Problem

来源:dev.to 2024-12-16 19:39:40 0浏览 收藏

今天golang学习网给大家带来了《Vanishing & Exploding Gradient Problem & Dying ReLU Problem》,其中涉及到的知识点包括等等,无论你是小白还是老手,都适合看一看哦~有好的建议也欢迎大家在评论留言,若是看完有所收获,也希望大家能多多点赞支持呀!一起加油学习~

Vanishing & Exploding Gradient Problem & Dying ReLU Problem

请我喝杯咖啡☕

*备忘录:

  • 我的帖子解释了过拟合和欠拟合。
  • 我的文章解释了 PyTorch 中的图层。
  • 我的文章解释了 PyTorch 中的激活函数。
  • 我的文章解释了 PyTorch 中的损失函数。
  • 我的文章解释了 PyTorch 中的优化器。

梯度消失问题

  • 是在反向传播过程中,梯度越来越小或者为零,从输出层到输入层多次将小梯度相乘,则模型无法有效训练。
  • 模型中层数越多,更容易发生。
  • 很容易由Sigmoid激活函数引起,即PyTorch中的Sigmoid(),因为它会产生范围为0<=x<=1的小值,然后将它们相乘多次,使梯度变小,从输出层到输入层越小。
  • 发生在:
    • CNN(卷积神经网络).
    • RNN(循环神经网络) 是 PyTorch 中的 RNN()。
  • 不容易发生在:
    • LSTM(长短期记忆) 即 PyTorch 中的 LSTM()。
    • GRU(门控循环单元) 即 PyTorch 中的 GRU()。
    • Resn​​et(残差神经网络),即 PyTorch 中的 Resnet。
    • Transformer 是 PyTorch 中的 Transformer()。
    • 等等
  • 在以下情况下可以被检测到:
    • 靠近输出层的层参数显着变化,而靠近输入层的层参数略有变化或保持不变。
    • 输入层附近各层的权重接近0或变为0。
    • 收敛缓慢或停止。
  • 可以通过以下方式缓解:
    • 批量归一化层,即 PyTorch 中的 BatchNorm1d()、BatchNorm2d() 或 BatchNorm3d()。
    • Leaky ReLU 激活函数,即 PyTorch 中的 LeakyReLU()。 *您还可以使用 ReLU 激活函数,即 PyTorch 中的 ReLU(),但它有时会导致 Dying ReLU Problem,我稍后会解释。
    • PReLU 激活函数,即 PyTorch 中的 PReLU()。
    • ELU 激活函数 即 PyTorch 中的 ELU()。
    • 梯度裁剪,即PyTorch中的clip_grad_norm_()或clip_grad_value_()。 *渐变裁剪是将渐变保持在指定范围内的方法。

梯度爆炸问题

  • 在反向传播过程中,梯度变得越来越大,从输出层到输入层将更大的梯度相乘多次,然后就不可能收敛。
  • 模型中层数越多,更容易发生。
  • 发生在:
    • CNN.
    • RNN.
    • LSTM.
    • GRU.
  • 不容易发生在:
    • Resn​​et.
    • 变压器
    • 等等
  • 在以下情况下可以被检测到:
    • 模型的权重显着增加。
    • 模型权重显着增加最终变成NaN。
    • 收敛是波动的,没有完成。
  • 可以通过以下方式缓解:
    • 批量归一化层.
    • 渐变裁剪.

Dying ReLU 问题

  • 在反向传播过程中,一旦具有ReLU激活函数的节点(神经元)接收到零或负输入值,它们总是为任何输入值产生零,最后,它们永远不会恢复产生任何值,除了为零,则无法有效训练模型。
  • 也称为Dead ReLU问题
  • 更容易发生在:
    • 更高的学习率。
    • 更高的负面偏见。
  • 在以下情况下可以被检测到:
    • 收敛缓慢或停止。
    • 损失函数返回 nan。
  • 可以通过以下方式缓解:
    • 较低的学习率。
    • 积极的偏见。
    • Leaky ReLU 激活函数.
    • PReLU 激活函数.
    • ELU 激活函数.

文中关于的知识介绍,希望对你的学习有所帮助!若是受益匪浅,那就动动鼠标收藏这篇《Vanishing & Exploding Gradient Problem & Dying ReLU Problem》文章吧,也可关注golang学习网公众号了解相关技术文章。

版本声明
本文转载于:dev.to 如有侵犯,请联系study_golang@163.com删除
Android XML 文本着色为何失效?Android XML 文本着色为何失效?
上一篇
Android XML 文本着色为何失效?
Python 局部变量访问错误:内部函数如何修改外部函数变量?
下一篇
Python 局部变量访问错误:内部函数如何修改外部函数变量?
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • PPTFake答辩PPT生成器:一键生成高效专业的答辩PPT
    PPTFake答辩PPT生成器
    PPTFake答辩PPT生成器,专为答辩准备设计,极致高效生成PPT与自述稿。智能解析内容,提供多样模板,数据可视化,贴心配套服务,灵活自主编辑,降低制作门槛,适用于各类答辩场景。
    20次使用
  • SEO标题Lovart AI:全球首个设计领域AI智能体,实现全链路设计自动化
    Lovart
    SEO摘要探索Lovart AI,这款专注于设计领域的AI智能体,通过多模态模型集成和智能任务拆解,实现全链路设计自动化。无论是品牌全案设计、广告与视频制作,还是文创内容创作,Lovart AI都能满足您的需求,提升设计效率,降低成本。
    18次使用
  • 美图AI抠图:行业领先的智能图像处理技术,3秒出图,精准无误
    美图AI抠图
    美图AI抠图,依托CVPR 2024竞赛亚军技术,提供顶尖的图像处理解决方案。适用于证件照、商品、毛发等多场景,支持批量处理,3秒出图,零PS基础也能轻松操作,满足个人与商业需求。
    32次使用
  • SEO标题PetGPT:智能桌面宠物程序,结合AI对话的个性化陪伴工具
    PetGPT
    SEO摘要PetGPT 是一款基于 Python 和 PyQt 开发的智能桌面宠物程序,集成了 OpenAI 的 GPT 模型,提供上下文感知对话和主动聊天功能。用户可高度自定义宠物的外观和行为,支持插件热更新和二次开发。适用于需要陪伴和效率辅助的办公族、学生及 AI 技术爱好者。
    33次使用
  • 可图AI图片生成:快手可灵AI2.0引领图像创作新时代
    可图AI图片生成
    探索快手旗下可灵AI2.0发布的可图AI2.0图像生成大模型,体验从文本生成图像、图像编辑到风格转绘的全链路创作。了解其技术突破、功能创新及在广告、影视、非遗等领域的应用,领先于Midjourney、DALL-E等竞品。
    56次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码