当前位置:首页 > 文章列表 > 文章 > python教程 > Vanishing & Exploding Gradient Problem & Dying ReLU Problem

Vanishing & Exploding Gradient Problem & Dying ReLU Problem

来源:dev.to 2024-12-16 19:39:40 0浏览 收藏

今天golang学习网给大家带来了《Vanishing & Exploding Gradient Problem & Dying ReLU Problem》,其中涉及到的知识点包括等等,无论你是小白还是老手,都适合看一看哦~有好的建议也欢迎大家在评论留言,若是看完有所收获,也希望大家能多多点赞支持呀!一起加油学习~

Vanishing & Exploding Gradient Problem & Dying ReLU Problem

请我喝杯咖啡☕

*备忘录:

  • 我的帖子解释了过拟合和欠拟合。
  • 我的文章解释了 PyTorch 中的图层。
  • 我的文章解释了 PyTorch 中的激活函数。
  • 我的文章解释了 PyTorch 中的损失函数。
  • 我的文章解释了 PyTorch 中的优化器。

梯度消失问题

  • 是在反向传播过程中,梯度越来越小或者为零,从输出层到输入层多次将小梯度相乘,则模型无法有效训练。
  • 模型中层数越多,更容易发生。
  • 很容易由Sigmoid激活函数引起,即PyTorch中的Sigmoid(),因为它会产生范围为0<=x<=1的小值,然后将它们相乘多次,使梯度变小,从输出层到输入层越小。
  • 发生在:
    • CNN(卷积神经网络).
    • RNN(循环神经网络) 是 PyTorch 中的 RNN()。
  • 不容易发生在:
    • LSTM(长短期记忆) 即 PyTorch 中的 LSTM()。
    • GRU(门控循环单元) 即 PyTorch 中的 GRU()。
    • Resn​​et(残差神经网络),即 PyTorch 中的 Resnet。
    • Transformer 是 PyTorch 中的 Transformer()。
    • 等等
  • 在以下情况下可以被检测到:
    • 靠近输出层的层参数显着变化,而靠近输入层的层参数略有变化或保持不变。
    • 输入层附近各层的权重接近0或变为0。
    • 收敛缓慢或停止。
  • 可以通过以下方式缓解:
    • 批量归一化层,即 PyTorch 中的 BatchNorm1d()、BatchNorm2d() 或 BatchNorm3d()。
    • Leaky ReLU 激活函数,即 PyTorch 中的 LeakyReLU()。 *您还可以使用 ReLU 激活函数,即 PyTorch 中的 ReLU(),但它有时会导致 Dying ReLU Problem,我稍后会解释。
    • PReLU 激活函数,即 PyTorch 中的 PReLU()。
    • ELU 激活函数 即 PyTorch 中的 ELU()。
    • 梯度裁剪,即PyTorch中的clip_grad_norm_()或clip_grad_value_()。 *渐变裁剪是将渐变保持在指定范围内的方法。

梯度爆炸问题

  • 在反向传播过程中,梯度变得越来越大,从输出层到输入层将更大的梯度相乘多次,然后就不可能收敛。
  • 模型中层数越多,更容易发生。
  • 发生在:
    • CNN.
    • RNN.
    • LSTM.
    • GRU.
  • 不容易发生在:
    • Resn​​et.
    • 变压器
    • 等等
  • 在以下情况下可以被检测到:
    • 模型的权重显着增加。
    • 模型权重显着增加最终变成NaN。
    • 收敛是波动的,没有完成。
  • 可以通过以下方式缓解:
    • 批量归一化层.
    • 渐变裁剪.

Dying ReLU 问题

  • 在反向传播过程中,一旦具有ReLU激活函数的节点(神经元)接收到零或负输入值,它们总是为任何输入值产生零,最后,它们永远不会恢复产生任何值,除了为零,则无法有效训练模型。
  • 也称为Dead ReLU问题
  • 更容易发生在:
    • 更高的学习率。
    • 更高的负面偏见。
  • 在以下情况下可以被检测到:
    • 收敛缓慢或停止。
    • 损失函数返回 nan。
  • 可以通过以下方式缓解:
    • 较低的学习率。
    • 积极的偏见。
    • Leaky ReLU 激活函数.
    • PReLU 激活函数.
    • ELU 激活函数.

文中关于的知识介绍,希望对你的学习有所帮助!若是受益匪浅,那就动动鼠标收藏这篇《Vanishing & Exploding Gradient Problem & Dying ReLU Problem》文章吧,也可关注golang学习网公众号了解相关技术文章。

版本声明
本文转载于:dev.to 如有侵犯,请联系study_golang@163.com删除
Android XML 文本着色为何失效?Android XML 文本着色为何失效?
上一篇
Android XML 文本着色为何失效?
Python 局部变量访问错误:内部函数如何修改外部函数变量?
下一篇
Python 局部变量访问错误:内部函数如何修改外部函数变量?
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    511次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    499次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 千音漫语:智能声音创作助手,AI配音、音视频翻译一站搞定!
    千音漫语
    千音漫语,北京熠声科技倾力打造的智能声音创作助手,提供AI配音、音视频翻译、语音识别、声音克隆等强大功能,助力有声书制作、视频创作、教育培训等领域,官网:https://qianyin123.com
    523次使用
  • MiniWork:智能高效AI工具平台,一站式工作学习效率解决方案
    MiniWork
    MiniWork是一款智能高效的AI工具平台,专为提升工作与学习效率而设计。整合文本处理、图像生成、营销策划及运营管理等多元AI工具,提供精准智能解决方案,让复杂工作简单高效。
    485次使用
  • NoCode (nocode.cn):零代码构建应用、网站、管理系统,降低开发门槛
    NoCode
    NoCode (nocode.cn)是领先的无代码开发平台,通过拖放、AI对话等简单操作,助您快速创建各类应用、网站与管理系统。无需编程知识,轻松实现个人生活、商业经营、企业管理多场景需求,大幅降低开发门槛,高效低成本。
    512次使用
  • 达医智影:阿里巴巴达摩院医疗AI影像早筛平台,CT一扫多筛癌症急慢病
    达医智影
    达医智影,阿里巴巴达摩院医疗AI创新力作。全球率先利用平扫CT实现“一扫多筛”,仅一次CT扫描即可高效识别多种癌症、急症及慢病,为疾病早期发现提供智能、精准的AI影像早筛解决方案。
    532次使用
  • 智慧芽Eureka:更懂技术创新的AI Agent平台,助力研发效率飞跃
    智慧芽Eureka
    智慧芽Eureka,专为技术创新打造的AI Agent平台。深度理解专利、研发、生物医药、材料、科创等复杂场景,通过专家级AI Agent精准执行任务,智能化工作流解放70%生产力,让您专注核心创新。
    514次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码