在 PyTorch 中移动 MNIST
来源:dev.to
2024-12-16 13:33:41
0浏览
收藏
有志者,事竟成!如果你在学习文章,那么本文《在 PyTorch 中移动 MNIST》,就很适合你!文章讲解的知识点主要包括,若是你对本文感兴趣,或者是想搞懂其中某个知识点,就请你继续往下看吧~
请我喝杯咖啡☕
*我的帖子解释了移动 mnist。
movingmnist() 可以使用 moving mnist 数据集,如下所示:
*备忘录:
- 第一个参数是 root(必需类型:str 或 pathlib.path)。 *绝对或相对路径都是可能的。
- 第二个参数是 split(optional-default:none-type:str):
*备注:
- 没有,可以设置“train”或“test”。
- 如果为 none,则返回每个视频的所有 20 帧(图像),忽略 split_ratio。
- 第三个参数是 split_ratio(optional-default:10-type:int):
*备注:
- 如果 split 为“train”,则返回 data[:, :split_ratio]。
- 如果 split 为“test”,则返回 data[:, split_ratio:]。
- 如果 split 为 none,则忽略它。 忽略 split_ratio。
- 第四个参数是transform(optional-default:none-type:callable)。
- 第五个参数是 download(optional-default:false-type:bool):
*备注:
- 如果为 true,则数据集将从互联网下载到 root。
- 如果为 true 并且数据集已下载,则将其提取。
- 如果为 true 并且数据集已下载,则不会发生任何事情。
- 如果数据集已经下载,则应该为 false,因为它速度更快。
- 您可以从此处手动下载并提取数据集,例如数据/移动mnist/。
from torchvision.datasets import movingmnist all_data = movingmnist( root="data" ) all_data = movingmnist( root="data", split=none, split_ratio=10, download=false, transform=none ) train_data = movingmnist( root="data", split="train" ) test_data = movingmnist( root="data", split="test" ) len(all_data), len(train_data), len(test_data) # (10000, 10000, 10000) len(all_data[0]), len(train_data[0]), len(test_data[0]) # (20, 10, 10) all_data # dataset movingmnist # number of datapoints: 10000 # root location: data all_data.root # 'data' print(all_data.split) # none all_data.split_ratio # 10 all_data.download #print(all_data.transform) # none from torchvision.datasets import movingmnist import matplotlib.pyplot as plt plt.figure(figsize=(10, 3)) plt.subplot(1, 3, 1) plt.title("all_data") plt.imshow(all_data[0].squeeze()[0]) plt.subplot(1, 3, 2) plt.title("train_data") plt.imshow(train_data[0].squeeze()[0]) plt.subplot(1, 3, 3) plt.title("test_data") plt.imshow(test_data[0].squeeze()[0]) plt.show()
from torchvision.datasets import movingmnist all_data = movingmnist( root="data", split=none ) train_data = movingmnist( root="data", split="train" ) test_data = movingmnist( root="data", split="test" ) def show_images(data, main_title=none): plt.figure(figsize=(10, 8)) plt.suptitle(t=main_title, y=1.0, fontsize=14) for i, image in enumerate(data, start=1): plt.subplot(4, 5, i) plt.tight_layout(pad=1.0) plt.title(i) plt.imshow(image) plt.show() show_images(data=all_data[0].squeeze(), main_title="all_data") show_images(data=train_data[0].squeeze(), main_title="train_data") show_images(data=test_data[0].squeeze(), main_title="test_data")
from torchvision.datasets import movingmnist all_data = movingmnist( root="data", split=none ) train_data = movingmnist( root="data", split="train" ) test_data = movingmnist( root="data", split="test" ) import matplotlib.pyplot as plt def show_images(data, main_title=none): plt.figure(figsize=(10, 8)) plt.suptitle(t=main_title, y=1.0, fontsize=14) col = 5 for i, image in enumerate(data, start=1): plt.subplot(4, 5, i) plt.tight_layout(pad=1.0) plt.title(i) plt.imshow(image.squeeze()[0]) if i == col: break plt.show() show_images(data=all_data, main_title="all_data") show_images(data=train_data, main_title="train_data") show_images(data=test_data, main_title="test_data")
from torchvision.datasets import movingmnist import matplotlib.animation as animation all_data = movingmnist( root="data" ) import matplotlib.pyplot as plt from ipython.display import html figure, axis = plt.subplots() # ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ `artistanimation()` ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ images = [] for image in all_data[0].squeeze(): images.append([axis.imshow(image)]) ani = animation.artistanimation(fig=figure, artists=images, interval=100) # ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ `artistanimation()` ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ # ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ `funcanimation()` ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ # def animate(i): # axis.imshow(all_data[0].squeeze()[i]) # # ani = animation.funcanimation(fig=figure, func=animate, # frames=20, interval=100) # ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ `funcanimation()` ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ # ani.save('result.gif') # save the animation as a `.gif` file plt.ioff() # hide a useless image # ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ show animation ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ html(ani.to_jshtml()) # animation operator # html(ani.to_html5_video()) # animation video # ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ show animation ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ # ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ show animation ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ # plt.rcparams["animation.html"] = "jshtml" # animation operator # plt.rcparams["animation.html"] = "html5" # animation video # ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ show animation ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
from torchvision.datasets import MovingMNIST from ipywidgets import interact, IntSlider all_data = MovingMNIST( root="data" ) import matplotlib.pyplot as plt from IPython.display import HTML def func(i): plt.imshow(all_data[0].squeeze()[i]) interact(func, i=(0, 19, 1)) # interact(func, i=IntSlider(min=0, max=19, step=1, value=0)) # ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ Set the start value ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ plt.show()
以上就是《在 PyTorch 中移动 MNIST》的详细内容,更多关于的资料请关注golang学习网公众号!
版本声明
本文转载于:dev.to 如有侵犯,请联系study_golang@163.com删除

- 上一篇
- GET请求参数放Body,POST请求参数放URL,这样做合理吗?

- 下一篇
- 如何将包含重复元素的集合拆分成多个不重复的子集?
查看更多
最新文章
-
- 文章 · python教程 | 6分钟前 |
- JSON数据处理技巧与应用攻略
- 395浏览 收藏
-
- 文章 · python教程 | 25分钟前 |
- Python函数定义与调用的终极秘诀
- 342浏览 收藏
-
- 文章 · python教程 | 28分钟前 |
- Python工厂模式使用技巧大全
- 407浏览 收藏
-
- 文章 · python教程 | 43分钟前 | java php
- Python中如何打印"HelloWorld"
- 165浏览 收藏
-
- 文章 · python教程 | 58分钟前 |
- JSON数据处理的实用技巧与方法
- 297浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- VSCodePython开发:插件推荐与调试技巧
- 241浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- TimeMachine备份与Python虚拟环境隔离实战攻略
- 257浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- PythonORM框架使用方法与实用技巧
- 317浏览 收藏
查看更多
课程推荐
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
查看更多
AI推荐
-
- 协启动
- SEO摘要协启动(XieQiDong Chatbot)是由深圳协启动传媒有限公司运营的AI智能服务平台,提供多模型支持的对话服务、文档处理和图像生成工具,旨在提升用户内容创作与信息处理效率。平台支持订阅制付费,适合个人及企业用户,满足日常聊天、文案生成、学习辅助等需求。
- 2次使用
-
- Brev AI
- 探索Brev AI,一个无需注册即可免费使用的AI音乐创作平台,提供多功能工具如音乐生成、去人声、歌词创作等,适用于内容创作、商业配乐和个人创作,满足您的音乐需求。
- 2次使用
-
- AI音乐实验室
- AI音乐实验室(https://www.aimusiclab.cn/)是一款专注于AI音乐创作的平台,提供从作曲到分轨的全流程工具,降低音乐创作门槛。免费与付费结合,适用于音乐爱好者、独立音乐人及内容创作者,助力提升创作效率。
- 2次使用
-
- PixPro
- SEO摘要PixPro是一款专注于网页端AI图像处理的平台,提供高效、多功能的图像处理解决方案。通过AI擦除、扩图、抠图、裁切和压缩等功能,PixPro帮助开发者和企业实现“上传即处理”的智能化升级,适用于电商、社交媒体等高频图像处理场景。了解更多PixPro的核心功能和应用案例,提升您的图像处理效率。
- 2次使用
-
- EasyMusic
- EasyMusic.ai是一款面向全场景音乐创作需求的AI音乐生成平台,提供“零门槛创作 专业级输出”的服务。无论你是内容创作者、音乐人、游戏开发者还是教育工作者,都能通过EasyMusic.ai快速生成高品质音乐,满足短视频、游戏、广告、教育等多元需求。平台支持一键生成与深度定制,积累了超10万创作者,生成超100万首音乐作品,用户满意度达99%。
- 3次使用
查看更多
相关文章
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览