当前位置:首页 > 文章列表 > 文章 > python教程 > 学习使用 Python 从数据集中分割训练和测试数据

学习使用 Python 从数据集中分割训练和测试数据

来源:dev.to 2024-12-14 12:52:10 0浏览 收藏

小伙伴们对文章编程感兴趣吗?是否正在学习相关知识点?如果是,那么本文《学习使用 Python 从数据集中分割训练和测试数据》,就很适合你,本篇文章讲解的知识点主要包括。在之后的文章中也会多多分享相关知识点,希望对大家的知识积累有所帮助!

学习使用 Python 从数据集中分割训练和测试数据

概括

本文教您如何将数据集划分为训练数据和测试数据,并将这种划分保存在 .pkl 文件中,这对于以有组织的方式训练和评估机器学习模型至关重要。该过程使用 sklearn 和 pickle 库,允许您在未来的项目中重用处理后的数据。本文是数据预处理系列教程的下一步。

主要涵盖主题:

  • 在 google colab 上准备笔记本
  • 将数据集划分为训练数据和测试数据
  • 除法的python代码详细解释
  • 使用 pickle 将分割保存到 .pkl 文件
  • 保存处理后的数据以供将来使用的优点

重要:要阅读本文,请首先按照建议的顺序阅读以下文章。每篇文章都为您提供理解下一篇文章所需的基础,确保您了解到目前为止的整个工作流程。

第 1 条: 应用机器学习:分类模型入门指南

第 2 条: 探索机器学习中的分类:变量类型

第 3 条: 探索 google colab:您编写机器学习模型的盟友

第 4 条:在 google colab 上使用 python 探索数据:使用成人.csv 数据集的实用指南

第 5 条: 使用 labelencoder 和 onehotencoder 揭秘预测器、类划分和分类属性处理

第 6 条: 数据扩展:高效模型的基础

介绍

在本文中,您将学习如何将数据集划分为训练和测试,以及如何将划分保存在 .pkl 文件中。此过程对于确保用于训练模型的数据和用于评估其性能的数据之间的清晰分离至关重要。

在 google colab 中启动该流程

首先,访问此笔记本链接并选择文件 > 将副本保存到云端硬盘。请记住,每个新帖子都需要再次加载数据集 (adult.csv)(更多信息请参见上面的第 4 条),因为每个教程都会创建一个新笔记本,仅添加本文中介绍的必要代码,但该笔记本带有到目前为止生成的所有代码。笔记本的副本将保存在 google drive 的 colab notebooks 文件夹中,从而保持流程的有序性和连续性。

为什么将数据集分为训练和测试?

划分数据集是任何机器学习项目的基本步骤,因为它允许模型从部分数据中“学习”(训练),然后根据以前从未见过的新数据进行评估(测试)。这种做法对于衡量模型的泛化能力至关重要。为了方便监控,我们将使用以下变量:

  • x_adult_training:训练预测变量
  • x_adult_teste:测试预测变量
  • y_adult_treinamento:训练目标变量
  • y_adult_teste:测试目标变量

用于分割数据集的python代码

下面是执行训练数据和测试数据之间的分割的 python 代码:

from sklearn.model_selection import train_test_split

x_adult_treinamento, x_adult_teste, y_adult_treinamento, y_adult_teste = train_test_split(x_adult, y_adult, test_size=0.2, random_state=0)

# dados para o treinamento
x_adult_treinamento.shape, y_adult_treinamento.shape

# dados para o teste
x_adult_teste.shape, y_adult_teste.shape

下图显示了前面的代码及其执行后的输出。

学习使用 Python 从数据集中分割训练和测试数据

代码解释:

train_test_split: sklearn 库中用于分割数据集的函数。
test_size=0.2:表示保留20%的数据用于测试,剩余80%用于训练。
random_state=0: 确保划分始终相同,为每次运行生成一致的结果。
shape: 检查分割后数据的形状,以确认分割是否正确。

将分割保存到 .pkl 文件

为了使工作更轻松并确保不同运行之间的一致性,我们将训练和测试变量保存在 .pkl 文件中。这使得可以在必要时重用数据,而无需再次进行划分。

使用pickle保存变量的代码:

import pickle
with open('adult.pkl', mode='wb') as fl:
  pickle.dump([X_adult_treinamento, y_adult_treinamento, X_adult_teste, y_adult_teste], fl)

要查看笔记本上的adult.pkl文件,只需单击左侧的文件夹图标,如下图所示。

学习使用 Python 从数据集中分割训练和测试数据

代码解释:

pickle:用于序列化对象的 python 库,允许您在文件中保存复杂变量。
dump: 将变量保存在名为 adult.pkl 的文件中。将来会读取该文件来加载分为训练和测试的数据集,优化工作流程。

结论

在本文中,您学习了如何将数据集拆分为训练数据和测试数据并将其保存在 .pkl 文件中。此过程是机器学习项目的基础,可确保组织有序且高效的结构。在下一篇文章中,我们将介绍模型的创建,从朴素贝叶斯算法开始,使用adult.pkl文件继续开发。

我推荐的书

1.数据科学家实用统计
2. python计算简介
3. 2041:未来几十年人工智能将如何改变你的生活
4. python强化课程
5.理解算法。为程序员和其他好奇的人提供的图解指南
6. 人工智能——李开复
7. 人工智能简介 - 非技术方法 - tom taulli

新 kindle

我对今年推出的新款 kindle 进行了详细分析,强调了它们的主要创新和对数字阅读器的好处。请通过以下链接查看全文:数字阅读的迷人世界:拥有 kindle 的优势

亚马逊 prime

加入 amazon prime 可享受一系列优势,包括无限制地观看数千部电影、连续剧和音乐,以及数百万种产品的免费送货和快速交付。会员还可享受prime video、prime music、prime reading等服务的专属优惠、抢先促销和福利,让购物娱乐体验更加便捷丰富。

如果您有兴趣,请通过以下链接进入:amazon prime,它帮助我继续推广人工智能和计算机编程。

文中关于的知识介绍,希望对你的学习有所帮助!若是受益匪浅,那就动动鼠标收藏这篇《学习使用 Python 从数据集中分割训练和测试数据》文章吧,也可关注golang学习网公众号了解相关技术文章。

版本声明
本文转载于:dev.to 如有侵犯,请联系study_golang@163.com删除
弹性布局中子元素缩小为何失效?弹性布局中子元素缩小为何失效?
上一篇
弹性布局中子元素缩小为何失效?
JDBC简介
下一篇
JDBC简介
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    511次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    498次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 千音漫语:智能声音创作助手,AI配音、音视频翻译一站搞定!
    千音漫语
    千音漫语,北京熠声科技倾力打造的智能声音创作助手,提供AI配音、音视频翻译、语音识别、声音克隆等强大功能,助力有声书制作、视频创作、教育培训等领域,官网:https://qianyin123.com
    193次使用
  • MiniWork:智能高效AI工具平台,一站式工作学习效率解决方案
    MiniWork
    MiniWork是一款智能高效的AI工具平台,专为提升工作与学习效率而设计。整合文本处理、图像生成、营销策划及运营管理等多元AI工具,提供精准智能解决方案,让复杂工作简单高效。
    193次使用
  • NoCode (nocode.cn):零代码构建应用、网站、管理系统,降低开发门槛
    NoCode
    NoCode (nocode.cn)是领先的无代码开发平台,通过拖放、AI对话等简单操作,助您快速创建各类应用、网站与管理系统。无需编程知识,轻松实现个人生活、商业经营、企业管理多场景需求,大幅降低开发门槛,高效低成本。
    191次使用
  • 达医智影:阿里巴巴达摩院医疗AI影像早筛平台,CT一扫多筛癌症急慢病
    达医智影
    达医智影,阿里巴巴达摩院医疗AI创新力作。全球率先利用平扫CT实现“一扫多筛”,仅一次CT扫描即可高效识别多种癌症、急症及慢病,为疾病早期发现提供智能、精准的AI影像早筛解决方案。
    198次使用
  • 智慧芽Eureka:更懂技术创新的AI Agent平台,助力研发效率飞跃
    智慧芽Eureka
    智慧芽Eureka,专为技术创新打造的AI Agent平台。深度理解专利、研发、生物医药、材料、科创等复杂场景,通过专家级AI Agent精准执行任务,智能化工作流解放70%生产力,让您专注核心创新。
    213次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码