使用 Python 进行词嵌入:Wordc
一分耕耘,一分收获!既然打开了这篇文章《使用 Python 进行词嵌入:Wordc》,就坚持看下去吧!文中内容包含等等知识点...希望你能在阅读本文后,能真真实实学到知识或者帮你解决心中的疑惑,也欢迎大佬或者新人朋友们多留言评论,多给建议!谢谢!
使用 python(和 gensim)实现 word2vec
注意:此代码是用 python 3.6.1 (+gensim 2.3.0) 编写的
word2vec与gensim的python实现及应用
import re import numpy as np from gensim.models import word2vec from nltk.corpus import gutenberg from multiprocessing import pool from scipy import spatial
- 导入训练数据集
- 从nltk库导入莎士比亚的哈姆雷特语料库
sentences = list(gutenberg.sents('shakespeare-hamlet.txt')) # import the corpus and convert into a list print('type of corpus: ', type(sentences)) print('length of corpus: ', len(sentences))
语料库类型:类“list”
语料库长度:3106
print(sentences[0]) # title, author, and year print(sentences[1]) print(sentences[10])
['[', 'the', '悲剧', 'of', '哈姆雷特', 'by', '威廉', '莎士比亚', '1599', ']']
['actus', 'primus', '.']
['弗兰', '.']
预处理数据
- 使用re模块预处理数据
- 将所有字母转换为小写
- 删除标点符号、数字等。
for i in range(len(sentences)): sentences[i] = [word.lower() for word in sentences[i] if re.match('^[a-za-z]+', word)] print(sentences[0]) # title, author, and year print(sentences[1]) print(sentences[10])
['the'、'悲剧'、'of'、'哈姆雷特'、'by'、'威廉'、'莎士比亚']
['actus', 'primus']
['弗兰']
创建和训练模型
- 创建 word2vec 模型并使用 hamlet 语料库对其进行训练
- 关键参数说明(https://radimrehurek.com/gensim/models/word2vec.html)
- 句子:训练数据(必须是带有标记化句子的列表)
- size:嵌入空间的尺寸
- sg: cbow 如果为 0,skip-gram 如果为 1
- 窗口:每个上下文所占的单词数(如果窗口
- 大小为3,考虑左邻域中的3个单词和右邻域中的3个单词)
- min_count:词汇表中包含的最小单词数
- iter:训练迭代次数
- workers:要训练的工作线程数量
model = word2vec(sentences = sentences, size = 100, sg = 1, window = 3, min_count = 1, iter = 10, workers = pool()._processes) model.init_sims(replace = true)
保存和加载模型
- word2vec模型可以本地保存和加载
- 这样做可以减少再次训练模型的时间
model.save('word2vec_model') model = word2vec.load('word2vec_model')
相似度计算
- 嵌入单词(即向量)之间的相似度可以使用余弦相似度等指标来计算
model.most_similar('hamlet')
[('horatio', 0.9978846311569214),
('女王', 0.9971947073936462),
('莱尔特斯', 0.9971820116043091),
('国王', 0.9968599081039429),
('妈妈', 0.9966716170310974),
('哪里', 0.9966292381286621),
('迪尔', 0.9965540170669556),
('奥菲莉亚', 0.9964221715927124),
('非常', 0.9963752627372742),
('哦', 0.9963476657867432)]
v1 = model['king'] v2 = model['queen'] # define a function that computes cosine similarity between two words def cosine_similarity(v1, v2): return 1 - spatial.distance.cosine(v1, v2) cosine_similarity(v1, v2)
0.99437165260314941
参考文献:
- 原始论文:mikolov, t.、chen, k.、corrado, g. 和 dean, j. (2013)。向量空间中单词表示的有效估计。 arxiv 预印本 arxiv:1301.3781.
本篇关于《使用 Python 进行词嵌入:Wordc》的介绍就到此结束啦,但是学无止境,想要了解学习更多关于文章的相关知识,请关注golang学习网公众号!

- 上一篇
- 如何高效管理电脑值班,提升工作效率和安全性

- 下一篇
- 路由器连两台电脑,两台电脑同时上会很影响网速么?
-
- 文章 · python教程 | 1分钟前 |
- Pythonsort与sorted区别全解析
- 134浏览 收藏
-
- 文章 · python教程 | 6分钟前 |
- PyTorchBPTT循环网络实现全解析
- 406浏览 收藏
-
- 文章 · python教程 | 18分钟前 |
- PyADS数据处理优化:类设计与实战技巧
- 435浏览 收藏
-
- 文章 · python教程 | 33分钟前 |
- Python实现后缀表达式计算方法
- 121浏览 收藏
-
- 文章 · python教程 | 35分钟前 | Matplotlib 动画 保存 动态图表 FuncAnimation
- PythonMatplotlib动画教程:动态图表绘制详解
- 348浏览 收藏
-
- 文章 · python教程 | 43分钟前 |
- Pythonrandom模块功能与使用全解析
- 172浏览 收藏
-
- 文章 · python教程 | 51分钟前 |
- Python数字水印与隐写技术详解
- 286浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python图像识别教程:OpenCV深度学习实战
- 131浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python打造智能音箱:语音交互系统详解
- 144浏览 收藏
-
- 文章 · python教程 | 1小时前 | logging 命令行重定向 Python静默运行 输出控制 warnings
- Python静默运行命令行技巧
- 221浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 511次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 498次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 千音漫语
- 千音漫语,北京熠声科技倾力打造的智能声音创作助手,提供AI配音、音视频翻译、语音识别、声音克隆等强大功能,助力有声书制作、视频创作、教育培训等领域,官网:https://qianyin123.com
- 169次使用
-
- MiniWork
- MiniWork是一款智能高效的AI工具平台,专为提升工作与学习效率而设计。整合文本处理、图像生成、营销策划及运营管理等多元AI工具,提供精准智能解决方案,让复杂工作简单高效。
- 167次使用
-
- NoCode
- NoCode (nocode.cn)是领先的无代码开发平台,通过拖放、AI对话等简单操作,助您快速创建各类应用、网站与管理系统。无需编程知识,轻松实现个人生活、商业经营、企业管理多场景需求,大幅降低开发门槛,高效低成本。
- 171次使用
-
- 达医智影
- 达医智影,阿里巴巴达摩院医疗AI创新力作。全球率先利用平扫CT实现“一扫多筛”,仅一次CT扫描即可高效识别多种癌症、急症及慢病,为疾病早期发现提供智能、精准的AI影像早筛解决方案。
- 175次使用
-
- 智慧芽Eureka
- 智慧芽Eureka,专为技术创新打造的AI Agent平台。深度理解专利、研发、生物医药、材料、科创等复杂场景,通过专家级AI Agent精准执行任务,智能化工作流解放70%生产力,让您专注核心创新。
- 188次使用
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览