当前位置:首页 > 文章列表 > 文章 > python教程 > 使用 EFS 在 AWS Lambda 上安装 Python 依赖项

使用 EFS 在 AWS Lambda 上安装 Python 依赖项

来源:dev.to 2024-12-08 20:27:59 0浏览 收藏

编程并不是一个机械性的工作,而是需要有思考,有创新的工作,语法是固定的,但解决问题的思路则是依靠人的思维,这就需要我们坚持学习和更新自己的知识。今天golang学习网就整理分享《使用 EFS 在 AWS Lambda 上安装 Python 依赖项》,文章讲解的知识点主要包括,如果你对文章方面的知识点感兴趣,就不要错过golang学习网,在这可以对大家的知识积累有所帮助,助力开发能力的提升。

使用 EFS 在 AWS Lambda 上安装 Python 依赖项

使用 aws lambda 时,开发人员面临的常见挑战之一是管理大型 python 依赖项。 pandasshapelygeopandas 等库对于地理空间分析等任务至关重要,通常会超过 lambda 的 250 mb 解压层限制。一个实用的解决方案?将您的依赖项存储在 efs(弹性文件系统) 上并将其挂载到您的 lambda 函数。

在这篇文章中,我们将逐步介绍其设置过程,包括先决条件、主要优势和分步实施。


先决条件

这篇文章面向具有高级 aws 经验的用户。它假设您对 lambda、efs、vpc 和安全组等 aws 服务有深入的了解,并且熟悉管理基础设施和在云中部署可扩展的解决方案。
在我们深入设置之前,请确保您具备以下条件:

  1. aws lambda 函数:您将使用 efs 配置的已部署 lambda 函数。
  2. efs 文件系统:在同一 aws 区域中创建的弹性文件系统。
  3. efs 访问点:在同一 aws 区域中创建的 efs 访问点,根目录路径为 /data ,确保正确设置 posix 权限和目录创建权限,如下所示,1101 和 1001,次要组id 1002 和权限 0755。
  4. vpc 和网络:确保 lambda 函数与 efs 位于同一 vpc 中,并正确配置子网和安全组。
  5. iam 权限:您的 lambda 函数需要访问 efs 的权限。附加适当的策略(例如,elasticfilesystem:clientmount、elasticfilesystem:clientwrite)。

用于安装软件包的处理程序代码

处理程序直接在挂载到 aws lambda 函数的 amazon efs 存储上安装 python 依赖项。这种方法绕过了 lambda 层的大小限制,使其适用于地理空间数据处理通常需要的重依赖项,例如 pandas、geopandas 和 shapely。它确保 /mnt/data 目录中提供所需的库,供 lambda 在执行期间使用:

import os
import subprocess

package_dir = "/mnt/data/lib/{}/site-packages/"

def get_python_version_tag():
    """generates a python version tag like 'python3.11'."""
    return f"python{os.sys.version_info.major}.{os.sys.version_info.minor}"

def install_package(package):
    """installs a python package into the efs-mounted directory."""
    target_dir = package_dir.format(get_python_version_tag())
    os.makedirs(target_dir, exist_ok=true)
    try:
        subprocess.run(
            [
                "pip",
                "install",
                package,
                "--target",
                target_dir,
                "--upgrade",
                "--no-cache-dir",
            ],
            check=true,
        )
        print(f"package {package} installed successfully!")
    except subprocess.calledprocesserror as e:
        print(f"failed to install package {package}: {e}")

def handler(event, context):
    """aws lambda handler for installing packages."""
    try:
        # list of packages to install from the event input
        packages = event.get("packages", [])
        for package in packages:
            install_package(package)
        #optional for see packages installed
        #os.system(f"ls -la {package_dir.format(get_python_version_tag())}")
        return {"statuscode": 200, "body": "packages installed successfully!"}
    except exception as e:
        print(f"error: {e}")
        return {"statuscode": 500, "body": f"an error occurred: {e}"}

测试步骤

调用 lambda 函数时,传递以下 json 负载:

{
    "packages": ["requests", "pandas"]
}

验证软件包安装

使用 ssh 会话或 aws cli 导航到您的 efs 挂载点(例如 /mnt/data/lib/)。
检查 site-packages/ 目录下已安装的软件包。
或者简单地使用 a 查看已安装的软件包

os.system(f"ls -la {package_dir.format(get_python_version_tag())}")

最终使用 lambda 中安装的依赖项

更新 lambda 函数的处理程序以包含安装在 efs 上的依赖项,这里的关键是将 efs 中的依赖项路径挂载到 lambda 处理程序的 pythonpath:

重要提示

所有希望使用已安装依赖项的 lambda 函数都必须将 efs 附加到 lambda。如果没有此附件,lambda 将无法访问 efs 上存储的所需依赖项。

import sys
sys.path.append("/mnt/data/lib/python3.11/site-packages/")  # Adjust Python version as needed
# Dependencies are now available!!!
import pandas as pd  

def lambda_handler(event, context):
    return {"message": "Dependencies loaded successfully!"}

主要优点

虽然直接在 efs 中安装 python 依赖项并不常见,但在 lambda 的默认限制(例如 250 mb 解压缩层大小)受到限制的情况下,它提供了某些优势。这种方法对于需要使用诸如 pandasshapelygeopandas 等繁重库进行地理空间计算的应用程序特别有用,这些库通常超出层大小限制。

使用 efs 进行依赖关系的好处:

  • 绕过 lambda 层大小限制:安装和使用库,无需担心打包限制。
  • 启用大规模地理空间处理:在无服务器环境中处理复杂的空间计算。
  • 简化依赖关系管理:动态添加或更新库,无需重新部署 lambda 函数。

该解决方案非常适合高级数据处理任务,例如地理空间分析,还可以根据需要轻松扩展存储,同时保持无服务器架构的灵活性。

今天关于《使用 EFS 在 AWS Lambda 上安装 Python 依赖项》的内容就介绍到这里了,是不是学起来一目了然!想要了解更多关于的内容请关注golang学习网公众号!

版本声明
本文转载于:dev.to 如有侵犯,请联系study_golang@163.com删除
ErrorGroup如何捕获子协程panic信息?ErrorGroup如何捕获子协程panic信息?
上一篇
ErrorGroup如何捕获子协程panic信息?
掌握未来:西安电脑培训课程全面指南
下一篇
掌握未来:西安电脑培训课程全面指南
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    543次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    516次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    500次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    485次学习
查看更多
AI推荐
  • ChatExcel酷表:告别Excel难题,北大团队AI助手助您轻松处理数据
    ChatExcel酷表
    ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
    3193次使用
  • Any绘本:开源免费AI绘本创作工具深度解析
    Any绘本
    探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
    3405次使用
  • 可赞AI:AI驱动办公可视化智能工具,一键高效生成文档图表脑图
    可赞AI
    可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
    3436次使用
  • 星月写作:AI网文创作神器,助力爆款小说速成
    星月写作
    星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
    4543次使用
  • MagicLight.ai:叙事驱动AI动画视频创作平台 | 高效生成专业级故事动画
    MagicLight
    MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
    3814次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码