大 O 表示法 - Python
来源:dev.to
2024-12-08 17:45:54
0浏览
收藏
在IT行业这个发展更新速度很快的行业,只有不停止的学习,才不会被行业所淘汰。如果你是文章学习者,那么本文《大 O 表示法 - Python》就很适合你!本篇内容主要包括##content_title##,希望对大家的知识积累有所帮助,助力实战开发!
1. 定义
描述算法执行时间或空间使用上限的数学符号。它表示为 o(f(n)),其中 f(n) 是一个函数,将时间或空间表示为输入 n 大小的函数.
更多信息请访问:http://bigocheatsheet.com
2. 目的
- 算法比较:允许您比较不同的算法并针对给定问题选择最有效的算法。
- 可扩展性:帮助预测当数据量增加时算法的行为方式。
3. 复杂度分析
- 最坏情况:指算法耗时更长或使用更多资源的场景。大o通常指的是这种情况。
- 最佳情况和平均情况:虽然很重要,但它们在大 o 表示法中使用频率较低。
4.空间与空间时间
- 时间复杂度:指算法执行所需的时间。
- 空间复杂度:指的是它使用的额外内存量。它可以具有诸如 o(1)(恒定空间)或 o(n)(线性空间)之类的符号。
示例:
import timeit import matplotlib.pyplot as plt import cProfile # O(1) def constant_time_operation(): return 42 # O(log n) def logarithmic_time_operation(n): count = 0 while n > 1: n //= 2 count += 1 return count # O(n) def linear_time_operation(n): total = 0 for i in range(n): total += i return total # O(n log n) def linear_logarithmic_time_operation(n): if n <= 1: return n else: return linear_logarithmic_time_operation(n - 1) + n # O(n^2) def quadratic_time_operation(n): total = 0 for i in range(n): for j in range(n): total += i + j return total # O(2^n) def exponential_time_operation(n): if n <= 1: return 1 else: return exponential_time_operation(n - 1) + exponential_time_operation(n - 1) # O(n!) def factorial_time_operation(n): if n == 0: return 1 else: return n * factorial_time_operation(n - 1) # Function to measure execution time using timeit def measure_time(func, *args): execution_time = timeit.timeit(lambda: func(*args), number=1000) return execution_time def plot_results(results): functions, times = zip(*results) colors = ['skyblue', 'orange', 'green', 'red', 'purple', 'brown', 'pink'] plt.figure(figsize=(14, 8)) plt.bar(functions, times, color=colors) for i, v in enumerate(times): plt.text(i, v + 0.5, f"{v:.6f}", ha='center', va='bottom', rotation=0, color='black') plt.xlabel('Function Complexity') plt.ylabel('Average Time (s)') plt.title('Execution Time of Different Algorithm Complexities') plt.grid(axis='y', linestyle='--', linewidth=0.5, color='gray', alpha=0.5) plt.tight_layout() plt.show() def main(): results = [] results.append(("O(1)", measure_time(constant_time_operation))) results.append(("O(log n)", measure_time(logarithmic_time_operation, 10))) results.append(("O(n)", measure_time(linear_time_operation, 10))) results.append(("O(n log n)", measure_time( linear_logarithmic_time_operation, 10))) results.append(("O(n^2)", measure_time(quadratic_time_operation, 7))) results.append(("O(2^n)", measure_time(exponential_time_operation, 7))) results.append(("O(n!)", measure_time(factorial_time_operation, 112))) plot_results(results) if __name__ == '__main__': cProfile.run("main()", sort="totime", filename="output_profile.prof")
请记住,仅仅应用大符号是不够的,或者,尽管这是第一步,还有其他方法来优化内存,例如使用插槽、缓存、线程、并行性、流程等
感谢您的阅读!!
通过反应并提出您的意见来支持我。
以上就是本文的全部内容了,是否有顺利帮助你解决问题?若是能给你带来学习上的帮助,请大家多多支持golang学习网!更多关于文章的相关知识,也可关注golang学习网公众号。
版本声明
本文转载于:dev.to 如有侵犯,请联系study_golang@163.com删除

- 上一篇
- 添加索引后,DISTINCT 查询结果排序变化的原因是什么?

- 下一篇
- 用于 Web 开发的顶级编程语言
查看更多
最新文章
-
- 文章 · python教程 | 18分钟前 |
- Python数据归一化方法与实用技巧
- 393浏览 收藏
-
- 文章 · python教程 | 53分钟前 | 性能优化 自定义序列化 安全性 json.dumps jsonify
- Python返回JSON响应的终极攻略
- 384浏览 收藏
-
- 文章 · python教程 | 1小时前 | 性能测试 Http请求 数据库交互 Flask测试客户端 响应验证
- 如何测试PythonFlask端点及技巧
- 366浏览 收藏
-
- 文章 · python教程 | 1小时前 | Numpy 矩阵运算 np.dot np.linalg np.vectorize
- Python矩阵运算技巧大全
- 158浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python函数定义与调用全攻略
- 387浏览 收藏
-
- 文章 · python教程 | 2小时前 | Numpy decimal 错误处理 浮点数 calculate_triangle_area
- Python计算三角形面积方法与代码示例
- 292浏览 收藏
-
- 文章 · python教程 | 2小时前 | Django Flask URL路由 urls.py @app.route()
- PythonURL路由定义技巧与实例
- 155浏览 收藏
-
- 文章 · python教程 | 2小时前 | 并行计算 随机数生成器 蒙特卡洛方法 Chudnovsky算法 圆周率
- Python简易计算圆周率的方法
- 185浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- Python创建WebSocket服务器实用指南
- 441浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- Python数据可视化技巧全攻略
- 363浏览 收藏
-
- 文章 · python教程 | 10小时前 | Excel文件 Pandas openpyxl read_excel chunksize
- Python处理Excel文件的实用技巧及方法
- 183浏览 收藏
-
- 文章 · python教程 | 11小时前 |
- 列表、元组、集合、字典遍历终极攻略
- 224浏览 收藏
查看更多
课程推荐
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
查看更多
AI推荐
-
- 笔灵AI生成答辩PPT
- 探索笔灵AI生成答辩PPT的强大功能,快速制作高质量答辩PPT。精准内容提取、多样模板匹配、数据可视化、配套自述稿生成,让您的学术和职场展示更加专业与高效。
- 26次使用
-
- 知网AIGC检测服务系统
- 知网AIGC检测服务系统,专注于检测学术文本中的疑似AI生成内容。依托知网海量高质量文献资源,结合先进的“知识增强AIGC检测技术”,系统能够从语言模式和语义逻辑两方面精准识别AI生成内容,适用于学术研究、教育和企业领域,确保文本的真实性和原创性。
- 42次使用
-
- AIGC检测-Aibiye
- AIbiye官网推出的AIGC检测服务,专注于检测ChatGPT、Gemini、Claude等AIGC工具生成的文本,帮助用户确保论文的原创性和学术规范。支持txt和doc(x)格式,检测范围为论文正文,提供高准确性和便捷的用户体验。
- 39次使用
-
- 易笔AI论文
- 易笔AI论文平台提供自动写作、格式校对、查重检测等功能,支持多种学术领域的论文生成。价格优惠,界面友好,操作简便,适用于学术研究者、学生及论文辅导机构。
- 51次使用
-
- 笔启AI论文写作平台
- 笔启AI论文写作平台提供多类型论文生成服务,支持多语言写作,满足学术研究者、学生和职场人士的需求。平台采用AI 4.0版本,确保论文质量和原创性,并提供查重保障和隐私保护。
- 42次使用
查看更多
相关文章
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览