PyTorch 中的 MNIST
来源:dev.to
2024-12-07 11:27:41
0浏览
收藏
对于一个文章开发者来说,牢固扎实的基础是十分重要的,golang学习网就来带大家一点点的掌握基础知识点。今天本篇文章带大家了解《PyTorch 中的 MNIST》,主要介绍了,希望对大家的知识积累有所帮助,快点收藏起来吧,否则需要时就找不到了!
请我喝杯咖啡☕
*我的帖子解释了 mnist。
mnist() 可以使用 mnist 数据集,如下所示:
*备忘录:
- 第一个参数是 root(必需类型:str 或 pathlib.path)。 *绝对或相对路径都是可能的。
- 第二个参数是 train(optional-default:false-type:float)。 *如果为 true,则使用训练数据(60,000 个样本),如果为 false,则使用测试数据(60,000 个样本)。
- 第三个参数是transform(optional-default:none-type:callable)。
- 第四个参数是 target_transform(optional-default:none-type:callable)。
- 第五个参数是 download(optional-default:false-type:bool):
*备注:
- 如果为 true,则从互联网下载数据集并解压(解压)到根目录。
- 如果为 true 并且数据集已下载,则将其提取。
- 如果为 true 并且数据集已下载并提取,则不会发生任何事情。
- 如果数据集已经下载并提取,则应该为 false,因为它速度更快。
- 您可以从此处手动下载并提取数据集,例如数据/mnist/原始/。
from torchvision.datasets import mnist train_data = mnist( root="data" ) train_data = mnist( root="data", train=true, transform=none, target_transform=none, download=false ) train_data # dataset mnist # number of datapoints: 60000 # root location: data # split: train train_data.root # 'data' train_data.train # true print(train_data.transform) # none print(train_data.target_transform) # none train_data.download # <bound method mnist.download of dataset mnist # number of datapoints: 60000 # root location: data # split: train> train_data[0] # (<pil.image.image image mode=l size=28x28>, 5) train_data[1] # (<pil.image.image image mode=l size=28x28>, 0) train_data[2] # (<pil.image.image image mode=l size=28x28>, 4) train_data[3] # (<pil.image.image image mode=l size=28x28>, 1) train_data.classes # ['0 - zero', # '1 - one', # '2 - two', # '3 - three', # '4 - four', # '5 - five', # '6 - six', # '7 - seven', # '8 - eight', # '9 - nine']
from torchvision.datasets import MNIST train_data = MNIST( root="data" ) test_data = MNIST( root="data", train=False ) import matplotlib.pyplot as plt def show_images(data): plt.figure(figsize=(10, 2)) col = 4 for i, (image, label) in enumerate(data, 1): plt.subplot(1, col, i) plt.title(label) plt.imshow(image) if i == col: break plt.show() show_images(data=train_data) show_images(data=test_data)
以上就是《PyTorch 中的 MNIST》的详细内容,更多关于的资料请关注golang学习网公众号!
版本声明
本文转载于:dev.to 如有侵犯,请联系study_golang@163.com删除

- 上一篇
- IntelliJ IDEA 文件图标全变橙色是怎么回事?

- 下一篇
- 使用`html()`获取代码时,为什么出现过多空格?如何解决?
查看更多
最新文章
-
- 文章 · python教程 | 1天前 |
- Python内存回收机制全解析
- 160浏览 收藏
-
- 文章 · python教程 | 1天前 |
- Python聊天机器人教程:NLTK与Rasa实战指南
- 480浏览 收藏
-
- 文章 · python教程 | 1天前 |
- Tkinter多Frame传值技巧全解析
- 444浏览 收藏
-
- 文章 · python教程 | 1天前 |
- Python首字母大写技巧详解
- 147浏览 收藏
-
- 文章 · python教程 | 1天前 |
- PyCharm图形显示问题解决方法汇总
- 224浏览 收藏
-
- 文章 · python教程 | 1天前 |
- 处理线段交点浮点精度问题技巧
- 402浏览 收藏
-
- 文章 · python教程 | 1天前 |
- Pythonwhile循环详解与使用技巧
- 412浏览 收藏
-
- 文章 · python教程 | 1天前 |
- Python协程怎么用?async/await详解
- 144浏览 收藏
-
- 文章 · python教程 | 1天前 |
- Pandas多列条件提取技巧分享
- 148浏览 收藏
查看更多
课程推荐
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 511次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 498次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
查看更多
AI推荐
-
- 千音漫语
- 千音漫语,北京熠声科技倾力打造的智能声音创作助手,提供AI配音、音视频翻译、语音识别、声音克隆等强大功能,助力有声书制作、视频创作、教育培训等领域,官网:https://qianyin123.com
- 143次使用
-
- MiniWork
- MiniWork是一款智能高效的AI工具平台,专为提升工作与学习效率而设计。整合文本处理、图像生成、营销策划及运营管理等多元AI工具,提供精准智能解决方案,让复杂工作简单高效。
- 136次使用
-
- NoCode
- NoCode (nocode.cn)是领先的无代码开发平台,通过拖放、AI对话等简单操作,助您快速创建各类应用、网站与管理系统。无需编程知识,轻松实现个人生活、商业经营、企业管理多场景需求,大幅降低开发门槛,高效低成本。
- 151次使用
-
- 达医智影
- 达医智影,阿里巴巴达摩院医疗AI创新力作。全球率先利用平扫CT实现“一扫多筛”,仅一次CT扫描即可高效识别多种癌症、急症及慢病,为疾病早期发现提供智能、精准的AI影像早筛解决方案。
- 144次使用
-
- 智慧芽Eureka
- 智慧芽Eureka,专为技术创新打造的AI Agent平台。深度理解专利、研发、生物医药、材料、科创等复杂场景,通过专家级AI Agent精准执行任务,智能化工作流解放70%生产力,让您专注核心创新。
- 152次使用
查看更多
相关文章
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览