当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > Scaling Laws终结,量化无用,AI大佬都在审视这篇论文

Scaling Laws终结,量化无用,AI大佬都在审视这篇论文

来源:机器之心 2024-12-05 12:25:02 0浏览 收藏

从现在开始,努力学习吧!本文《Scaling Laws终结,量化无用,AI大佬都在审视这篇论文》主要讲解了等等相关知识点,我会在golang学习网中持续更新相关的系列文章,欢迎大家关注并积极留言建议。下面就先一起来看一下本篇正文内容吧,希望能帮到你!

研究表明,你训练的 token 越多,你需要的精度就越高。

最近几天,AI 社区都在讨论同一篇论文。

UCSD 助理教授 Dan Fu 说它指明了大模型量化的方向。

Scaling Laws终结,量化无用,AI大佬都在审视这篇论文

CMU 教授 Tim Dettmers 则直接说:它是很长一段时间以来最重要的一篇论文。OpenAI 创始成员、特斯拉前 AI 高级总监 Andrej Karpathy 也转发了他的帖子。

Scaling Laws终结,量化无用,AI大佬都在审视这篇论文
Tim Dettmers 表示,可以说,人工智能的大部分进步都来自计算能力的提升,而(在最近)这主要依赖于低精度路线的加速(32- > 16 - > 8 位)。现在看来,这一趋势即将结束。再加上摩尔定律的物理限制,大模型的大规模扩展可以说要到头了。

例如,英伟达最新的 AI 计算卡 Blackwell 将拥有出色的 8 位能力,并在硬件层面实现逐块量化。这将使 8 位训练变得像从 FP16 切换到 BF16 一样简单。然而,正如我们从新论文中看到的那样,对于很多大模型的训练来说,8 位是不够的。

与其他模型相比,Llama 405B 没有得到太多应用的主要原因是它体量太大了,运行 405B 模型进行推理非常麻烦。但论文表明,训练较小的模型(例如 70B)时,你也无法在低精度下有效地训练这些模型。见下图 8B(圆形) 70B(三角形) 405B(星型):
Scaling Laws终结,量化无用,AI大佬都在审视这篇论文
可见对于 20B Token 数据的训练,训练 8B 模型在 16 位中效率更高。对于 70B 模型来说 8 位仍然有效,但效率越来越低。

Tim Dettmers 感叹道:从我自己的经验(大量失败的研究)来看,效率是无法欺骗的。如果量化失败,那么稀疏化也会失败,其他效率机制也会失败。如果这是真的,那么我们现在就已经接近最优了。

那以后我们怎么办?眼前似乎只有三条可能的路线:
  • 扩大数据中心规模:未来约 2 年这仍然是可以做到的事;

  • 通过动态扩展:路由到更小的专门模型或大 / 小模型上;

  • 知识的提炼:这条路线与其他技术不同,并且可能具有不同的特性。

对于新硬件来说,我们仍然有 HBM4 内存,这将是一个很好的提升。但 FP4 训练似乎是一个谎言,节点缩小不会再增加多少效率了。

这篇名为《Scaling Laws for Precision》的论文顾名思义,制定了一个和大语言模型使用数据精度有关的扩展定律,涵盖了训练前和训练后。
Scaling Laws终结,量化无用,AI大佬都在审视这篇论文
  • 论文标题:Scaling Laws for Precision

  • 论文链接:https://arxiv.org/abs/2411.04330

据论文一作,来自哈佛大学的 Tanishq Kumar 介绍,他们的研究认为:
  • 由于当代大模型在大量数据上经历了过度训练,因此训练后量化已变得非常困难。因此,如果在训练后量化,最终更多的预训练数据可能会造成副作用;

  • 在预训练期间以不同的精度放置权重、激活或注意力的效果是一致且可预测的,并且拟合扩展定律表明,高精度(BF16)和下一代精度(FP4)的预训练可能都是次优的设计选择。

低精度训练和推理会影响语言模型的质量和成本,但当前的大模型 Scaling Law 并未考虑到这一点。在这项工作中,研究人员为训练和推理设计了「精度感知」扩展定律。

作者提出,以较低的精度进行训练会降低模型的有效参数数量,从而使我们能够预测低精度训练和训练后量化带来的额外损失。对于推理,随着模型在更多数据上进行训练,训练后量化带来的性能下降会加剧,最终导致额外的预训练数据产生负面影响。对于训练,扩展定律使我们能够预测具有不同精度的不同部分的模型的损失,以较低精度训练较大的模型可能是计算最优的。

该工作统一了训练后量化和训练前量化的扩展定律,得出一个单一的函数形式,可以预测不同精度下训练和推理的性能下降。

预训练 scaling law 表明,计算最佳预训练精度通常独立于计算预算。然而,令人惊讶的是,如果模型大小受到限制,这种独立性就不再成立,在这种情况下,计算最佳精度在计算中增长缓慢。

该研究以 3-16 bit 精度预训练了 465 个语言模型,并对每个模型进行了训练后量化。对于具有 N 个参数的语言模型,在 D 个 token 上进行训练,训练精度为 P_train,训练后权重精度为 P_post,该研究最终找到了一个统一的 Scaling Law,其形式如下:
Scaling Laws终结,量化无用,AI大佬都在审视这篇论文
其中,A、B、E、α、β 是正拟合常数,δ_PTQ 是指推理前训练后量化引起的损失退化。

研究简介

该研究首先研究了训练后量化模型权重的常用方法,发现训练时间越长 / 预训练期间「看到」的数据越多,模型在推理时对量化就越敏感,这解释了为什么 Llama-3 可能更难量化。
Scaling Laws终结,量化无用,AI大佬都在审视这篇论文
事实上,这种损失退化大致是预训练期间看到的 token / 参数比值的幂律,因此可以提前预测关键数据大小,超过该数据大小的更多数据的预训练会非常有害。直觉可能是,当你训练更多的数据时,更多的知识被压缩成权重,给定的扰动会对模型性能造成更大的损害。
Scaling Laws终结,量化无用,AI大佬都在审视这篇论文
图 1:主要发现示意图。在 BF16 中将固定大小的模型在各种数据预算上训练,并在最后量化权重。可以发现,由于训练后量化而导致的退化会随着预训练期间看到的 token 数量增加而增加,因此额外的预训练数据可能会造成损害。
Scaling Laws终结,量化无用,AI大佬都在审视这篇论文
                               经过扩展验证表明,以较低的精度训练较大的模型可以实现计算优化。

然后该研究将注意力转向低精度训练,主要研究量化感知训练(仅权重)和低精度训练。该研究将模型分解为权重、激活和 KV 缓存,找到其中任何一个量化到任意精度时损失的 Scaling Law,并开发一种组合且可解释的函数形式来预测在预训练期间,量化这三者的任意组合对损失的影响。

该研究的 Scaling Law 依赖于「有效参数计数」的概念,研究团队假设当你降低精度,参数也降低一定数量,计数就降低,那么包含 FP4 中所有内容的 10 亿参数模型具有可比较的数量 BF16 中 250m 模型的「有效参数」。
Scaling Laws终结,量化无用,AI大佬都在审视这篇论文
虽然权重可以毫无问题地以低精度进行训练,但激活和 KV 缓存很敏感。
Scaling Laws终结,量化无用,AI大佬都在审视这篇论文
最后,该研究将训练前和训练后的发现统一为可解释的函数形式,可以以任何精度组合预测训练前和训练后的损失。

该研究还发现,低精度的预训练可以以定量可预测的方式「增强」模型的训练后量化,但其程度低于直观预期。
Scaling Laws终结,量化无用,AI大佬都在审视这篇论文
作者表示:「该研究在进行实验时保持受控的架构和设置,但在实践中,通常会故意进行架构调整以适应低精度训练。」这也是这项研究的一点局限性。

感兴趣的读者可以阅读论文原文,了解更多研究内容。

参考内容:
https://twitter.com/Tim_Dettmers/status/1856338240099221674
https://twitter.com/Tanishq97836660/status/1856045600355352753

终于介绍完啦!小伙伴们,这篇关于《Scaling Laws终结,量化无用,AI大佬都在审视这篇论文》的介绍应该让你收获多多了吧!欢迎大家收藏或分享给更多需要学习的朋友吧~golang学习网公众号也会发布科技周边相关知识,快来关注吧!

版本声明
本文转载于:机器之心 如有侵犯,请联系study_golang@163.com删除
海量数据中元素是否存在如何快速判断?海量数据中元素是否存在如何快速判断?
上一篇
海量数据中元素是否存在如何快速判断?
上交大o1复现新突破:蒸馏超越原版,警示AI研发\
下一篇
上交大o1复现新突破:蒸馏超越原版,警示AI研发\"捷径陷阱\"
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 笔灵AI生成答辩PPT:高效制作学术与职场PPT的利器
    笔灵AI生成答辩PPT
    探索笔灵AI生成答辩PPT的强大功能,快速制作高质量答辩PPT。精准内容提取、多样模板匹配、数据可视化、配套自述稿生成,让您的学术和职场展示更加专业与高效。
    24次使用
  • 知网AIGC检测服务系统:精准识别学术文本中的AI生成内容
    知网AIGC检测服务系统
    知网AIGC检测服务系统,专注于检测学术文本中的疑似AI生成内容。依托知网海量高质量文献资源,结合先进的“知识增强AIGC检测技术”,系统能够从语言模式和语义逻辑两方面精准识别AI生成内容,适用于学术研究、教育和企业领域,确保文本的真实性和原创性。
    38次使用
  • AIGC检测服务:AIbiye助力确保论文原创性
    AIGC检测-Aibiye
    AIbiye官网推出的AIGC检测服务,专注于检测ChatGPT、Gemini、Claude等AIGC工具生成的文本,帮助用户确保论文的原创性和学术规范。支持txt和doc(x)格式,检测范围为论文正文,提供高准确性和便捷的用户体验。
    38次使用
  • 易笔AI论文平台:快速生成高质量学术论文的利器
    易笔AI论文
    易笔AI论文平台提供自动写作、格式校对、查重检测等功能,支持多种学术领域的论文生成。价格优惠,界面友好,操作简便,适用于学术研究者、学生及论文辅导机构。
    50次使用
  • 笔启AI论文写作平台:多类型论文生成与多语言支持
    笔启AI论文写作平台
    笔启AI论文写作平台提供多类型论文生成服务,支持多语言写作,满足学术研究者、学生和职场人士的需求。平台采用AI 4.0版本,确保论文质量和原创性,并提供查重保障和隐私保护。
    41次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码