Pandas如何高效复制不同结构DataFrame的整列?
2024-12-04 08:31:02
0浏览
收藏
从现在开始,我们要努力学习啦!今天我给大家带来《Pandas如何高效复制不同结构DataFrame的整列?》,感兴趣的朋友请继续看下去吧!下文中的内容我们主要会涉及到等等知识点,如果在阅读本文过程中有遇到不清楚的地方,欢迎留言呀!我们一起讨论,一起学习!
python pandas 不同结构的 dataframe 整列复制
在 pandas 中,我们经常需要对不同结构的 dataframe 进行操作,其中一种常见情况是向一个 dataframe(例如 df1)添加来自另一个 dataframe(例如 df2)的整列。
对于这种场景,逐个单元格进行复制虽然可行,但效率较低。为了解决这个问题,我们可以使用以下方法:
- 将 df2 中想要复制的列与 df1 中的相应列合并为一个新的 series(例如 new_a)。
- 根据 df2 的形状和 df1 的形状,调整 df1 的索引,以匹配 new_a 的长度。
- 将 new_a 赋值给 df1 中的目标列(例如 'a')。
下面是一个示例代码,演示了如何实现上述步骤:
import pandas as pd # 创建两个不同结构的 dataframe df1 = pd.dataframe({ 'a': range(4), 'b': range(4), 'c': range(4), 'd': range(4) }) df2 = pd.dataframe({ 'd': [11, 22, 33], 'e': ['aa', 'bb', 'cc'] }) # 创建新的 series,将 df2 的 'd' 列和 'e' 列合并到一起 new_a = pd.concat([df1['a'], df2['d'], df2['e']], ignore_index=true) # 调整 df1 的索引 df1 = df1.reindex(range(df2.shape[0] * 2 + df1.shape[0])) # 将 new_a 赋值给 df1 的 'a' 列 df1['a'] = new_a print(df1)
输出:
A B C D E 0 0 0 0 0 aa 1 1 1 1 1 bb 2 2 2 2 2 cc 3 3 3 3 3 NaN 4 11 NaN NaN NaN NaN 5 22 NaN NaN NaN NaN 6 33 NaN NaN NaN NaN
好了,本文到此结束,带大家了解了《Pandas如何高效复制不同结构DataFrame的整列?》,希望本文对你有所帮助!关注golang学习网公众号,给大家分享更多文章知识!

- 上一篇
- Spring Boot Interceptor 常见问题解析:注释错误和拦截路径失效?

- 下一篇
- 如何高效限制PHP中对用户艾特内容的解析次数和数量?
查看更多
最新文章
-
- 文章 · python教程 | 37分钟前 | 性能优化 FastAPI 输入验证 Pydantic @validator
- FastAPI输入验证方法与实用技巧
- 235浏览 收藏
-
- 文章 · python教程 | 38分钟前 | orm 数据库操作 sqlalchemy 项目规模 mysql-connector-python
- Python数据库操作技巧与实战攻略
- 475浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- 在Python中如何保存Matplotlib图像?
- 141浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- 终极指南:遍历列表、元组、集合和字典
- 418浏览 收藏
-
- 文章 · python教程 | 1小时前 | HTML解析 数据提取 CSS选择器 beautifulsoup Selenium
- BeautifulSoup在Python中的使用技巧及方法
- 325浏览 收藏
-
- 文章 · python教程 | 3小时前 |
- Python学习路径与实用建议
- 356浏览 收藏
查看更多
课程推荐
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
查看更多
AI推荐
-
- 笔灵AI生成答辩PPT
- 探索笔灵AI生成答辩PPT的强大功能,快速制作高质量答辩PPT。精准内容提取、多样模板匹配、数据可视化、配套自述稿生成,让您的学术和职场展示更加专业与高效。
- 24次使用
-
- 知网AIGC检测服务系统
- 知网AIGC检测服务系统,专注于检测学术文本中的疑似AI生成内容。依托知网海量高质量文献资源,结合先进的“知识增强AIGC检测技术”,系统能够从语言模式和语义逻辑两方面精准识别AI生成内容,适用于学术研究、教育和企业领域,确保文本的真实性和原创性。
- 38次使用
-
- AIGC检测-Aibiye
- AIbiye官网推出的AIGC检测服务,专注于检测ChatGPT、Gemini、Claude等AIGC工具生成的文本,帮助用户确保论文的原创性和学术规范。支持txt和doc(x)格式,检测范围为论文正文,提供高准确性和便捷的用户体验。
- 37次使用
-
- 易笔AI论文
- 易笔AI论文平台提供自动写作、格式校对、查重检测等功能,支持多种学术领域的论文生成。价格优惠,界面友好,操作简便,适用于学术研究者、学生及论文辅导机构。
- 48次使用
-
- 笔启AI论文写作平台
- 笔启AI论文写作平台提供多类型论文生成服务,支持多语言写作,满足学术研究者、学生和职场人士的需求。平台采用AI 4.0版本,确保论文质量和原创性,并提供查重保障和隐私保护。
- 41次使用
查看更多
相关文章
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览