当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > TMI2024 | 阿大、同济等提出TraCoCo,用于3D医学图像半监督分割

TMI2024 | 阿大、同济等提出TraCoCo,用于3D医学图像半监督分割

来源:机器之心 2024-11-29 20:54:39 0浏览 收藏

一分耕耘,一分收获!既然打开了这篇文章《TMI2024 | 阿大、同济等提出TraCoCo,用于3D医学图像半监督分割》,就坚持看下去吧!文中内容包含等等知识点...希望你能在阅读本文后,能真真实实学到知识或者帮你解决心中的疑惑,也欢迎大佬或者新人朋友们多留言评论,多给建议!谢谢!

TMI2024 | 阿大、同济等提出TraCoCo,用于3D医学图像半监督分割

编辑 | ScienceAI

3D 医学图像分割方法已经取得了成功,但它们对大量体素级标注数据的依赖是一个需要解决的缺点,因为获取这些标注的成本很高。

半监督学习(SSL)通过使用大量未标注数据和少量标注数据进行模型训练,解决了这一问题。

最成功的 SSL 方法基于一致性学习,即通过最小化从扰动视图中获得的模型响应之间的距离来实现的。这些扰动通常在视图之间保持空间输入上下文的一致性,这可能导致模型从空间输入上下文中学习分割模式,而不是从前景对象中学习。

在最新的研究中,澳大利亚阿德莱德大学(The University of Adelaide)、同济大学等机构的研究人员提出了  TraCoCo,这是一种一致性学习 SSL 方法,它通过改变输入数据视图的空间输入上下文来进行扰动,使模型能够从前景对象中学习分割模式。

此外,该团队提出了一种新的“Confident Regional Cross entropy (CRC)”损失,该损失提高了训练收敛性,并保持了对共训练伪标签错误的鲁棒性。该方法在多个3D数据基准上达到了最先进的结果,例如左心房(LA)、胰腺CT(Pancreas)、和脑肿瘤分割(BraTS19)。该方法在一个 2D 切片基准——自动心脏诊断挑战(ACDC)上也取得了最佳结果,进一步证明了其有效性。

TMI2024 | 阿大、同济等提出TraCoCo,用于3D医学图像半监督分割

文章地址:https://ieeexplore.ieee.org/abstract/document/10695462

代码地址:https://github.com/yyliu01/TraCoCo

背景

TMI2024 | 阿大、同济等提出TraCoCo,用于3D医学图像半监督分割

3D医学图像分割方法虽然已取得成功,但它们依赖于大量体素级别标注数据,这是一个亟需解决的问题,因为获得这些标注的成本非常高。为了克服这一挑战,半监督学习(SSL)通过结合大量未标注数据和少量标注数据来训练模型,从而减少对标注数据的需求。

最成功的 SSL 方法基于一致性学习,通过最小化模型在未标注数据的不同扰动视图下的响应差异来实现一致性。然而,这些扰动通常保持视图之间的空间输入上下文较为一致,这可能导致模型从空间上下文中学习分割模式,而不是从前景对象中学习。

为解决这一问题,研究人员提出了一种新的 SSL 方法,称为 Translation Consistent Co-training(TraCoCo)。TraCoCo 通过改变输入数据视图的空间输入上下文来扰动视图,使模型能够从前景对象中学习分割模式。

同时,该研究还提出了一种新的 Confident Regional Cross-Entropy(CRC)损失,该损失旨在提高训练的收敛性并保持对共训练伪标签错误的鲁棒性。

TMI2024 | 阿大、同济等提出TraCoCo,用于3D医学图像半监督分割

Translation Consistent Co-training(TraCoCo)

TraCoCo是一种基于互助学习(Co-training)框架的方法,该框架通过翻译一致性(Translation Consistency)来扰动输入数据的空间上下文,从而减少模型对背景模式的“记忆”,确保模型专注于前景对象的分割。

模型框架

TraCoCo 包含两个初始参数不同的独立网络(通常为 VNet或 3D-UNet)。输入数据通过随机裁剪生成两个子体积(sub-volumes),这两个子体积的空间上下文不同,但在体素网格中存在重叠区域。

模型目标

为了确保模型在不同空间上下文下的前景分割结果一致,TraCoCo 引入了多种损失函数,包括监督学习损失、半监督学习损失和翻译一致性损失。本文的方法实现通过最小化以下损失函数来进行训练:

TMI2024 | 阿大、同济等提出TraCoCo,用于3D医学图像半监督分割

其中,分别由监督学习损失,半监督学习损失,和翻译一致性损失组成。

监督学习损失(SupervisedLearning Loss)

监督学习损失通过带标注的数据集 D_L 进行计算,包括体素级交叉熵损失(Cross-Entropy Loss)和 Dice损失,用来优化模型的分割性能。损失函数定义为:

TMI2024 | 阿大、同济等提出TraCoCo,用于3D医学图像半监督分割

TranslationConsistency Loss

Translation ConsistencyLoss 主要目标是确保模型在不同空间上下文下的分割结果一致。具体实现过程如下:从训练体积中随机提取两个中心不同的子体积

损失函数定义为:

TMI2024 | 阿大、同济等提出TraCoCo,用于3D医学图像半监督分割

TMI2024 | 阿大、同济等提出TraCoCo,用于3D医学图像半监督分割
TMI2024 | 阿大、同济等提出TraCoCo,用于3D医学图像半监督分割

其中,公式 4 是 Kullback-Leibler(KL)散度,用于计算两个子体积在重叠区域的分割结果之间的差异;公式 5 是基于负熵的正则化损失,用于平衡训练体素中的前景和背景类。

半监督学习损失(Semi-supervisedLearning Loss)

半监督学习损失用于强化两个模型之间的分割一致性,Confident Regional Cross-Entropy (CRC) Loss, 其定义为:

TMI2024 | 阿大、同济等提出TraCoCo,用于3D医学图像半监督分割

TMI2024 | 阿大、同济等提出TraCoCo,用于3D医学图像半监督分割

3DCutMix

为了进一步提高训练的泛化性,本文采用了 3DCutMix 技术。实现为随机生成一个 3D 二值掩码,该掩码包含一个随机定义位置和尺寸的“1”方块。掩码应用在未标注数据和伪标签上,定义为:

TMI2024 | 阿大、同济等提出TraCoCo,用于3D医学图像半监督分割

实验

本文在四个公开的 3D 医学图像半监督分割数据集上进行了实验,包括:

左心房(Left Atrium, LA):100 个 3D MRI 体积,其中 80 个用于训练,20 个用于测试。

胰腺 CT(Pancreas-CT):82 个对比增强的 CT 扫描,采用特定的预处理步骤。

脑肿瘤分割 2019(BraTS19):包含 335 个脑部 MRI 样本,每个样本包含四种扫描类型(T1, T1-ce, T2, FLAIR)。

自动心脏诊断挑战(ACDC):该数据集包含 100 个心脏 MRI 扫描,本文使用了其 2D 切片进行半监督学习。

实验设置:采用了 VNet 和 3D-UNet 作为模型架构,实验评估指标包括Dice、Jaccard、平均表面距离(ASD)和 95%Hausdorff 距离(95HD)。实验结果显示,TraCoCo 在这些基准测试上均优于现有的最先进(SOTA)方法,特别是在标注数据较少的情况下。

TMI2024 | 阿大、同济等提出TraCoCo,用于3D医学图像半监督分割

TMI2024 | 阿大、同济等提出TraCoCo,用于3D医学图像半监督分割
TMI2024 | 阿大、同济等提出TraCoCo,用于3D医学图像半监督分割
TMI2024 | 阿大、同济等提出TraCoCo,用于3D医学图像半监督分割

TMI2024 | 阿大、同济等提出TraCoCo,用于3D医学图像半监督分割

TMI2024 | 阿大、同济等提出TraCoCo,用于3D医学图像半监督分割

TMI2024 | 阿大、同济等提出TraCoCo,用于3D医学图像半监督分割

TMI2024 | 阿大、同济等提出TraCoCo,用于3D医学图像半监督分割

TMI2024 | 阿大、同济等提出TraCoCo,用于3D医学图像半监督分割

TMI2024 | 阿大、同济等提出TraCoCo,用于3D医学图像半监督分割

TMI2024 | 阿大、同济等提出TraCoCo,用于3D医学图像半监督分割

TMI2024 | 阿大、同济等提出TraCoCo,用于3D医学图像半监督分割

TMI2024 | 阿大、同济等提出TraCoCo,用于3D医学图像半监督分割

TMI2024 | 阿大、同济等提出TraCoCo,用于3D医学图像半监督分割

总结

本文提出了 TraCoCo 和 CRC 损失在 3D 和 2D 医学图像分割任务中的有效性,证明了其在减少对背景模式的“记忆”以及提高前景对象分割精度方面的能力。

未来的工作计划包括扩展 TraCoCo 到更多复杂的医学图像任务,并在多模态医学图像中探索其半监督学习能力。

到这里,我们也就讲完了《TMI2024 | 阿大、同济等提出TraCoCo,用于3D医学图像半监督分割》的内容了。个人认为,基础知识的学习和巩固,是为了更好的将其运用到项目中,欢迎关注golang学习网公众号,带你了解更多关于理论,智慧医疗,图像分割的知识点!

版本声明
本文转载于:机器之心 如有侵犯,请联系study_golang@163.com删除
网络接收字符串匹配失败,如何解决 switch case 无法匹配问题?网络接收字符串匹配失败,如何解决 switch case 无法匹配问题?
上一篇
网络接收字符串匹配失败,如何解决 switch case 无法匹配问题?
现代低代码测试平台
下一篇
现代低代码测试平台
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • SEO标题协启动:AI驱动的智能对话与内容生成平台 - 提升创作效率
    协启动
    SEO摘要协启动(XieQiDong Chatbot)是由深圳协启动传媒有限公司运营的AI智能服务平台,提供多模型支持的对话服务、文档处理和图像生成工具,旨在提升用户内容创作与信息处理效率。平台支持订阅制付费,适合个人及企业用户,满足日常聊天、文案生成、学习辅助等需求。
    9次使用
  • Brev AI:零注册门槛的全功能免费AI音乐创作平台
    Brev AI
    探索Brev AI,一个无需注册即可免费使用的AI音乐创作平台,提供多功能工具如音乐生成、去人声、歌词创作等,适用于内容创作、商业配乐和个人创作,满足您的音乐需求。
    9次使用
  • AI音乐实验室:一站式AI音乐创作平台,助力音乐创作
    AI音乐实验室
    AI音乐实验室(https://www.aimusiclab.cn/)是一款专注于AI音乐创作的平台,提供从作曲到分轨的全流程工具,降低音乐创作门槛。免费与付费结合,适用于音乐爱好者、独立音乐人及内容创作者,助力提升创作效率。
    9次使用
  • SEO标题PixPro:AI驱动网页端图像处理平台,提升效率的终极解决方案
    PixPro
    SEO摘要PixPro是一款专注于网页端AI图像处理的平台,提供高效、多功能的图像处理解决方案。通过AI擦除、扩图、抠图、裁切和压缩等功能,PixPro帮助开发者和企业实现“上传即处理”的智能化升级,适用于电商、社交媒体等高频图像处理场景。了解更多PixPro的核心功能和应用案例,提升您的图像处理效率。
    9次使用
  • EasyMusic.ai:零门槛AI音乐生成平台,专业级输出助力全场景创作
    EasyMusic
    EasyMusic.ai是一款面向全场景音乐创作需求的AI音乐生成平台,提供“零门槛创作 专业级输出”的服务。无论你是内容创作者、音乐人、游戏开发者还是教育工作者,都能通过EasyMusic.ai快速生成高品质音乐,满足短视频、游戏、广告、教育等多元需求。平台支持一键生成与深度定制,积累了超10万创作者,生成超100万首音乐作品,用户满意度达99%。
    12次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码