当前位置:首页 > 文章列表 > 数据库 > Redis > 如何优雅地使用Redis之位图操作

如何优雅地使用Redis之位图操作

来源:51cto 2023-01-26 12:43:38 0浏览 收藏

本篇文章向大家介绍《如何优雅地使用Redis之位图操作》,主要包括操作、Redis、位图,具有一定的参考价值,需要的朋友可以参考一下。

 在进入今天的主题前,先简单地解释下Redis中的位图到底是什么。Redis官方文档对于位图的介绍如下:

位图不是一个真实的数据类型,而是定义在字符串类型上的面向位的操作的集合。由于字符串类型是二进制安全的二进制大对象,并且***长度是 512MB,适合于设置 2^32个不同的位。

位操作分为两组:常量时间单个位的操作,像设置一个位为 1 或者 0,或者获取该位的值。对一组位的操作,例如计算指定范围位的置位数量。

位图的***优势是有时是一种非常显著的节省空间来存储信息的方式。例如,在一个系统中,不同用户由递增的用户 ID 来表示,可以使用 512MB 的内存来表示 400 万用户的单个位信息(例如他们是否需要接收信件)。 

简而言之,位图操作是用来操作比特位的,其优点是节省内存空间。为什么可以节省内存空间呢?假如我们需要存储100万个用户的登录状态,使用位图的话最少只需要100万个比特位(比特位1表示登录,比特位0表示未登录)就可以存储了,而如果以字符串的形式存储,比如说以userId为key,是否登录(字符串“1”表示登录,字符串“0”表示未登录)为value进行存储的话,就需要存储100万个字符串了,相比之下使用位图存储占用的空间要小得多,这就是位图存储的优势。

位图常用操作

位图的常用操作如下:

  • setbit

设置特定key对应的比特位的值。

  • getbit

获取特定key对应的比特位的值。

  • bitcount

统计给定key对应的字符串比特位为1的数量。

使用位图存储用户登录状态

位图的常见应用是用来存储状态值,比如存储用户的登录状态。

假设我们现在有一个需求,需要记录用户注册以来每天的登录状态,那么我们就可以以用户id为key,然后以日期或者日期的偏移量作为下标,将登录状态存储到对应的比特位中,这样就可以很方便地获取用户某一天的登录状态了。

接下来看代码:

public class UserLoginStatusService { 
    private static final String host="111.111.111.111"; 
    private static final int port=6379; 
    private static final Jedis jedis=new Jedis(host,port); 
    //下文需要使用日期的偏移量作为redis位图的offset, 
    //这里使用了Java 8的新日期API 
    private static final LocalDate beginDate=LocalDate.of(2018,1,1); 
    static { 
        jedis.connect(); 
    public void setLoginStatus(String userId, LocalDate date,boolean isLogin){ 
        long offset = getDateDuration(beginDate, date); 
        jedis.setbit(userId,offset,isLogin); 
    public boolean getLoginStatus(String userId,LocalDate date){ 
        long offset = getDateDuration(beginDate, date); 
        return jedis.getbit(userId,offset); 
    private long getDateDuration(LocalDate start ,LocalDate end){ 
        return start.until(end, ChronoUnit.DAYS); 
    public static void main(String[] args) { 
        UserLoginStatusService userLoginStatusService=new UserLoginStatusService(); 
        String userId="user_1"; 
        LocalDate today = LocalDate.now(); 
        userLoginStatusService.setLoginStatus(userId,today,true); 
        boolean todayLoginStatus = userLoginStatusService.getLoginStatus(userId, today); 
        System.out.println(String.format("The loginStatus of %s in %s is %s",userId,today,todayLoginStatus)); 
        LocalDate yesterday = LocalDate.now().minusDays(1); 
        boolean yesterdayLoginStatus = userLoginStatusService.getLoginStatus(userId, yesterday); 
        System.out.println(String.format("The loginStatus of %s in %s is %s",userId,yesterday,yesterdayLoginStatus)); 

代码不复杂,我们在main方法中设置当天的登录状态为true,然后分别查出当天的登录状态和昨天的登录状态,由于redis位图的比特位默认是0,所以该代码的正确输出应该是今天已登录,昨天未登录,我们运行一次看看结果。

从程序运行结果来看,Redis的位图确实满足了我们的需求,且兼有节省存储空间的优点。

使用位图统计登录天数

接下来我们有一个新需求,就是统计某个用户注册后前10天的登录天数,Redis中有个bitcount命令,可以统计某个字符串中的比特位为1的数量,其还有2个参数start和end,表示要统计的范围,咋一看好像可以用来实现我们这个需求,但是这里有一个坑需要注意下,bitcount命令的start和end参数指的是字节的索引,而不是比特位的索引,而我们如果要使用位图来统计某个用户注册后前10天的登录天数的话,需要统计的是比特位索引从0到9的比特值为1的数量,所以直接使用bitcount命令显然是无法满足要求的。那么假如说我们一定要用位图来存储登录状态呢,应该咋办呢?其实办法还是有的。我们可以先拿到比特位索引从0到9所在的字节数组,再将该字节数组解析成二进制形式,进而统计出比特位索引从0到9比特值为1的数量。

要拿到比特位索引所在的字节在字节数组中的下标比较简单,只要将比特位索引除以8(一个字节包含8个比特位)再向下取整就行了。接下来就是使用redis的getrange命令来截取字节数组了。

拿到了字节数组,接下来就是解析字节数组,统计其中比特值为1的数量了。我们先从最简单的单个字节说起,假设一个字节的各个比特位的值如下:

我们设比特位索引为index,假如我们要计算比特位为7的比特值,只需要将原值直接跟1进行与运算就行了。要计算比特位为6的比特值,只需要将原值右移1位,再跟1进行与运算。以此类推,要计算第index位的比特值,只需要先右移(7-index)位,再跟1进行与运算即可。

只要能够统计出截取出来的的字节数组中比特位的值为1的数量,接下来再减去不包含在对应比特索引中的比特值为1的数量,即可统计出给定的比特索引范围内比特值为1的数量。

这么说有点拗口,我们以上述例子为例进行讲解吧。我们要统计出用户注册后前10天的登录天数,如果用位图存储用户登录状态,位图中的索引为注册天数的话,那么我们需要统计比特索引从0到9的比特值为1的数量,才能计算出该用户注册后前10天的登录天数。

我们先计算出比特索引从0到9包含在哪一段字节数组中,前面说了,只需要将对应的索引除以8,再向下取整就行了。从而可以得知比特位索引从0到9对应的是下标从0到1的字节数组。

接下来使用getrange命令截取该字节数组,假设其值如下:

假设比特索引0到9对应的字节数组的比特值情况如上所示,我们需要统计的是***个字节(下标为0)中的0到7位中比特值为1的数量,再加上第二个字节(下标为1)中的第0到1位中比特值为1的数量。加起来刚好10位,也就是对应用户注册前10天的登录天数。当然我们也可以统计出这2个字节中的比特值为1的总数,再减去第二个字节的从2到7位(上述表格标红的地方)中比特值为1的数量,也可统计出该用户注册后前10天的登录天数。本文用的是第二种方法。

接下来上代码:

private static final int BIT_AMOUNT_IN_ONE_BYTE =8; 
    private Jedis jedis; 
    public int bitCountByBitIndex(String key, long startBitIndex, long endBitIndex) { 
        int startByteIndex = getByteIndexInTheBytes(startBitIndex); 
        int endByteIndex = getByteIndexInTheBytes(endBitIndex); 
        byte[] bytes = jedis.getrange(key.getBytes(), startByteIndex, endByteIndex); 
        int totalBitInBytes = getTotalBitInBytes(bytes); 
        int startBitIndexInFirstByte = getBitIndexInTheByte(startBitIndex); 
        int endBitIndexInLastByte = getBitIndexInTheByte(endBitIndex); 
        byte firstByte = bytes[0]; 
        byte lastByte = bytes[bytes.length-1]; 
        for(int i=7;i>(BIT_AMOUNT_IN_ONE_BYTE-1-startBitIndexInFirstByte);i--){ 
            if(((firstByte>>i)&1)==1){ 
                totalBitInBytes--; 
        for(int i=0;i>i)&1)==1){ 
                totalBitInBytes--; 
        return totalBitInBytes; 
    private int getTotalBitInBytes(byte[] bytes){ 
        int count=0; 
        for(byte b:bytes){ 
            for(int i = 0; i>i)&1)==1){ 
                    count++; 
        return count; 
    private int getByteIndexInTheBytes(long offset){ 
        return (int) offset/ BIT_AMOUNT_IN_ONE_BYTE; 
    private int getBitIndexInTheByte(long offset){ 
        return (int)(offset-offset/ BIT_AMOUNT_IN_ONE_BYTE * BIT_AMOUNT_IN_ONE_BYTE); 

代码就不注释了,整体思路已经在上面讲解了。

当然要实现本文所述的功能,也不一定非要这么做,还是有其他的方案的。比如:可以将放入位图的offset统一乘以8(一个字节占8比特),这样一来就可以直接用redis的bitcount来统计对应索引范围内的比特值为1的数量了,当然这种方案的缺点也相当明显,就是浪费内存,因为原先只需要1比特存储的数据,现在需要8比特存储,所以这种方案不能很好地利用位图索引节省存储空间的特点。

文中关于redis的知识介绍,希望对你的学习有所帮助!若是受益匪浅,那就动动鼠标收藏这篇《如何优雅地使用Redis之位图操作》文章吧,也可关注golang学习网公众号了解相关技术文章。

版本声明
本文转载于:51cto 如有侵犯,请联系study_golang@163.com删除
Redis 模块开源许可证变更,多个项目不再开源遭质疑Redis 模块开源许可证变更,多个项目不再开源遭质疑
上一篇
Redis 模块开源许可证变更,多个项目不再开源遭质疑
这7本书,让你分分钟拿下Redis数据库
下一篇
这7本书,让你分分钟拿下Redis数据库
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    543次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    516次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    500次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    485次学习
查看更多
AI推荐
  • ChatExcel酷表:告别Excel难题,北大团队AI助手助您轻松处理数据
    ChatExcel酷表
    ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
    3164次使用
  • Any绘本:开源免费AI绘本创作工具深度解析
    Any绘本
    探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
    3376次使用
  • 可赞AI:AI驱动办公可视化智能工具,一键高效生成文档图表脑图
    可赞AI
    可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
    3405次使用
  • 星月写作:AI网文创作神器,助力爆款小说速成
    星月写作
    星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
    4507次使用
  • MagicLight.ai:叙事驱动AI动画视频创作平台 | 高效生成专业级故事动画
    MagicLight
    MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
    3785次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码