构建企业代理系统:核心组件设计与优化
来源:dev.to
2024-11-23 10:06:54
0浏览
收藏
小伙伴们对文章编程感兴趣吗?是否正在学习相关知识点?如果是,那么本文《构建企业代理系统:核心组件设计与优化》,就很适合你,本篇文章讲解的知识点主要包括。在之后的文章中也会多多分享相关知识点,希望对大家的知识积累有所帮助!

介绍
构建企业级人工智能代理需要仔细考虑组件设计、系统架构和工程实践。本文探讨了构建健壮且可扩展的代理系统的关键组件和最佳实践。
1. 提示模板工程
1.1 模板设计模式
from typing import protocol, dict
from jinja2 import template
class prompttemplate(protocol):
def render(self, **kwargs) -> str:
pass
class jinjaprompttemplate:
def __init__(self, template_string: str):
self.template = template(template_string)
def render(self, **kwargs) -> str:
return self.template.render(**kwargs)
class promptlibrary:
def __init__(self):
self.templates: dict[str, prompttemplate] = {}
def register_template(self, name: str, template: prompttemplate):
self.templates[name] = template
def get_template(self, name: str) -> prompttemplate:
return self.templates[name]
1.2 版本控制和测试
class promptversion:
def __init__(self, version: str, template: str, metadata: dict):
self.version = version
self.template = template
self.metadata = metadata
self.test_cases = []
def add_test_case(self, inputs: dict, expected_output: str):
self.test_cases.append((inputs, expected_output))
def validate(self) -> bool:
template = jinjaprompttemplate(self.template)
for inputs, expected in self.test_cases:
result = template.render(**inputs)
if not self._validate_output(result, expected):
return false
return true
2. 分层内存系统
2.1 内存架构
from typing import any, list
from datetime import datetime
class memoryentry:
def __init__(self, content: any, importance: float):
self.content = content
self.importance = importance
self.timestamp = datetime.now()
self.access_count = 0
class memorylayer:
def __init__(self, capacity: int):
self.capacity = capacity
self.memories: list[memoryentry] = []
def add(self, entry: memoryentry):
if len(self.memories) >= self.capacity:
self._evict()
self.memories.append(entry)
def _evict(self):
# implement memory eviction strategy
self.memories.sort(key=lambda x: x.importance * x.access_count)
self.memories.pop(0)
class hierarchicalmemory:
def __init__(self):
self.working_memory = memorylayer(capacity=5)
self.short_term = memorylayer(capacity=50)
self.long_term = memorylayer(capacity=1000)
def store(self, content: any, importance: float):
entry = memoryentry(content, importance)
if importance > 0.8:
self.working_memory.add(entry)
elif importance > 0.5:
self.short_term.add(entry)
else:
self.long_term.add(entry)
2.2 内存检索和索引
from typing import list, tuple
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
class memoryindex:
def __init__(self, embedding_model):
self.embedding_model = embedding_model
self.embeddings = []
self.memories = []
def add(self, memory: memoryentry):
embedding = self.embedding_model.embed(memory.content)
self.embeddings.append(embedding)
self.memories.append(memory)
def search(self, query: str, k: int = 5) -> list[tuple[memoryentry, float]]:
query_embedding = self.embedding_model.embed(query)
similarities = cosine_similarity(
[query_embedding],
self.embeddings
)[0]
top_k_indices = np.argsort(similarities)[-k:]
return [
(self.memories[i], similarities[i])
for i in top_k_indices
]
3. 可观察的推理链
3.1 链结构
from typing import list, optional
from dataclasses import dataclass
import uuid
@dataclass
class thoughtnode:
content: str
confidence: float
supporting_evidence: list[str]
class reasoningchain:
def __init__(self):
self.chain_id = str(uuid.uuid4())
self.nodes: list[thoughtnode] = []
self.metadata = {}
def add_thought(self, thought: thoughtnode):
self.nodes.append(thought)
def get_path(self) -> list[str]:
return [node.content for node in self.nodes]
def get_confidence(self) -> float:
if not self.nodes:
return 0.0
return sum(n.confidence for n in self.nodes) / len(self.nodes)
3.2 链条监测与分析
import logging
from opentelemetry import trace
from prometheus_client import histogram
reasoning_time = histogram(
'reasoning_chain_duration_seconds',
'time spent in reasoning chain'
)
class chainmonitor:
def __init__(self):
self.tracer = trace.get_tracer(__name__)
def monitor_chain(self, chain: reasoningchain):
with self.tracer.start_as_current_span("reasoning_chain") as span:
span.set_attribute("chain_id", chain.chain_id)
with reasoning_time.time():
for node in chain.nodes:
with self.tracer.start_span("thought") as thought_span:
thought_span.set_attribute(
"confidence",
node.confidence
)
logging.info(
f"thought: {node.content} "
f"(confidence: {node.confidence})"
)
4. 组件解耦和复用
4.1 界面设计
from abc import abc, abstractmethod
from typing import generic, typevar
t = typevar('t')
class component(abc, generic[t]):
@abstractmethod
def process(self, input_data: t) -> t:
pass
class pipeline:
def __init__(self):
self.components: list[component] = []
def add_component(self, component: component):
self.components.append(component)
def process(self, input_data: any) -> any:
result = input_data
for component in self.components:
result = component.process(result)
return result
4.2 组件注册
class componentregistry:
_instance = none
def __new__(cls):
if cls._instance is none:
cls._instance = super().__new__(cls)
cls._instance.components = {}
return cls._instance
def register(self, name: str, component: component):
self.components[name] = component
def get(self, name: str) -> optional[component]:
return self.components.get(name)
def create_pipeline(self, component_names: list[str]) -> pipeline:
pipeline = pipeline()
for name in component_names:
component = self.get(name)
if component:
pipeline.add_component(component)
return pipeline
5. 性能监控和优化
5.1 性能指标
from dataclasses import dataclass
from typing import dict
import time
@dataclass
class performancemetrics:
latency: float
memory_usage: float
token_count: int
success_rate: float
class performancemonitor:
def __init__(self):
self.metrics: dict[str, list[performancemetrics]] = {}
def record_operation(
self,
operation_name: str,
metrics: performancemetrics
):
if operation_name not in self.metrics:
self.metrics[operation_name] = []
self.metrics[operation_name].append(metrics)
def get_average_metrics(
self,
operation_name: str
) -> optional[performancemetrics]:
if operation_name not in self.metrics:
return none
metrics_list = self.metrics[operation_name]
return performancemetrics(
latency=sum(m.latency for m in metrics_list) / len(metrics_list),
memory_usage=sum(m.memory_usage for m in metrics_list) / len(metrics_list),
token_count=sum(m.token_count for m in metrics_list) / len(metrics_list),
success_rate=sum(m.success_rate for m in metrics_list) / len(metrics_list)
)
5.2 优化策略
class PerformanceOptimizer:
def __init__(self, monitor: PerformanceMonitor):
self.monitor = monitor
self.thresholds = {
'latency': 1.0, # seconds
'memory_usage': 512, # MB
'token_count': 1000,
'success_rate': 0.95
}
def analyze_performance(self, operation_name: str) -> List[str]:
metrics = self.monitor.get_average_metrics(operation_name)
if not metrics:
return []
recommendations = []
if metrics.latency > self.thresholds['latency']:
recommendations.append(
"Consider implementing caching or parallel processing"
)
if metrics.memory_usage > self.thresholds['memory_usage']:
recommendations.append(
"Optimize memory usage through batch processing"
)
if metrics.token_count > self.thresholds['token_count']:
recommendations.append(
"Implement prompt optimization to reduce token usage"
)
if metrics.success_rate < self.thresholds['success_rate']:
recommendations.append(
"Review error handling and implement retry mechanisms"
)
return recommendations
结论
构建企业级agent系统需要仔细注意:
- 结构化提示管理和版本控制
- 高效且可扩展的内存系统
- 可观察、可追溯的推理过程
- 模块化和可重用的组件设计
- 全面的性能监控和优化
到这里,我们也就讲完了《构建企业代理系统:核心组件设计与优化》的内容了。个人认为,基础知识的学习和巩固,是为了更好的将其运用到项目中,欢迎关注golang学习网公众号,带你了解更多关于的知识点!
版本声明
本文转载于:dev.to 如有侵犯,请联系study_golang@163.com删除
如何优化大型 MySQL 表中的日期查询?
- 上一篇
- 如何优化大型 MySQL 表中的日期查询?
- 下一篇
- win11输入法在哪里设置
查看更多
最新文章
-
- 文章 · python教程 | 39分钟前 |
- Python快速访问嵌套字典键值对
- 340浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python中ch代表字符的用法解析
- 365浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- NumPy1D近邻查找:向量化优化技巧
- 391浏览 收藏
-
- 文章 · python教程 | 1小时前 | 正则表达式 字符串操作 re模块 Python文本处理 文本清洗
- Python正则表达式实战教程详解
- 392浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- BehaveFixture临时目录管理技巧
- 105浏览 收藏
-
- 文章 · python教程 | 2小时前 | Python 余数 元组 divmod()函数 商
- divmod函数详解与使用技巧
- 442浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- Python多进程共享字符串内存技巧
- 291浏览 收藏
-
- 文章 · python教程 | 3小时前 |
- Python索引怎么用,元素如何查找定位
- 407浏览 收藏
-
- 文章 · python教程 | 3小时前 | break else continue 无限循环 PythonWhile循环
- Pythonwhile循环详解与使用技巧
- 486浏览 收藏
-
- 文章 · python教程 | 4小时前 |
- Python类型错误调试方法详解
- 129浏览 收藏
-
- 文章 · python教程 | 4小时前 |
- 函数与方法有何不同?详解解析
- 405浏览 收藏
查看更多
课程推荐
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 500次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 485次学习
查看更多
AI推荐
-
- ChatExcel酷表
- ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
- 3203次使用
-
- Any绘本
- 探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
- 3416次使用
-
- 可赞AI
- 可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
- 3446次使用
-
- 星月写作
- 星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
- 4554次使用
-
- MagicLight
- MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
- 3824次使用
查看更多
相关文章
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览

