当前位置:首页 > 文章列表 > 文章 > python教程 > LangGraph 状态机:管理生产中的复杂代理任务流

LangGraph 状态机:管理生产中的复杂代理任务流

来源:dev.to 2024-11-20 09:32:11 0浏览 收藏

本篇文章给大家分享《LangGraph 状态机:管理生产中的复杂代理任务流》,覆盖了文章的常见基础知识,其实一个语言的全部知识点一篇文章是不可能说完的,但希望通过这些问题,让读者对自己的掌握程度有一定的认识(B 数),从而弥补自己的不足,更好的掌握它。

LangGraph 状态机:管理生产中的复杂代理任务流

什么是 langgraph?

langgraph是专为llm应用程序设计的工作流编排框架。其核心原则是:

  • 将复杂任务分解为状态和转换
  • 管理状态转换逻辑
  • 任务执行过程中各种异常的处理

想想购物:浏览→添加到购物车→结账→付款。 langgraph 帮助我们有效地管理此类工作流程。

核心概念

1. 国家

状态就像任务执行中的检查点:

from typing import typeddict, list

class shoppingstate(typeddict):
    # current state
    current_step: str
    # cart items
    cart_items: list[str]
    # total amount
    total_amount: float
    # user input
    user_input: str

class shoppinggraph(stategraph):
    def __init__(self):
        super().__init__()

        # define states
        self.add_node("browse", self.browse_products)
        self.add_node("add_to_cart", self.add_to_cart)
        self.add_node("checkout", self.checkout)
        self.add_node("payment", self.payment)

2. 状态转换

状态转换定义任务流的“路线图”:

class shoppingcontroller:
    def define_transitions(self):
        # add transition rules
        self.graph.add_edge("browse", "add_to_cart")
        self.graph.add_edge("add_to_cart", "browse")
        self.graph.add_edge("add_to_cart", "checkout")
        self.graph.add_edge("checkout", "payment")

    def should_move_to_cart(self, state: shoppingstate) -> bool:
        """determine if we should transition to cart state"""
        return "add to cart" in state["user_input"].lower()

3. 状态持久化

为了保证系统的可靠性,我们需要持久化状态信息:

class statemanager:
    def __init__(self):
        self.redis_client = redis.redis()

    def save_state(self, session_id: str, state: dict):
        """save state to redis"""
        self.redis_client.set(
            f"shopping_state:{session_id}",
            json.dumps(state),
            ex=3600  # 1 hour expiration
        )

    def load_state(self, session_id: str) -> dict:
        """load state from redis"""
        state_data = self.redis_client.get(f"shopping_state:{session_id}")
        return json.loads(state_data) if state_data else none

4. 错误恢复机制

任何步骤都可能失败,我们需要优雅地处理这些情况:

class errorhandler:
    def __init__(self):
        self.max_retries = 3

    async def with_retry(self, func, state: dict):
        """function execution with retry mechanism"""
        retries = 0
        while retries < self.max_retries:
            try:
                return await func(state)
            except exception as e:
                retries += 1
                if retries == self.max_retries:
                    return self.handle_final_error(e, state)
                await self.handle_retry(e, state, retries)

    def handle_final_error(self, error, state: dict):
        """handle final error"""
        # save error state
        state["error"] = str(error)
        # rollback to last stable state
        return self.rollback_to_last_stable_state(state)

现实示例:智能客户服务系统

让我们看一个实际的例子——智能客服系统:

from langgraph.graph import stategraph, state

class customerservicestate(typeddict):
    conversation_history: list[str]
    current_intent: str
    user_info: dict
    resolved: bool

class customerservicegraph(stategraph):
    def __init__(self):
        super().__init__()

        # initialize states
        self.add_node("greeting", self.greet_customer)
        self.add_node("understand_intent", self.analyze_intent)
        self.add_node("handle_query", self.process_query)
        self.add_node("confirm_resolution", self.check_resolution)

    async def greet_customer(self, state: state):
        """greet customer"""
        response = await self.llm.generate(
            prompt=f"""
            conversation history: {state['conversation_history']}
            task: generate appropriate greeting
            requirements:
            1. maintain professional friendliness
            2. acknowledge returning customers
            3. ask how to help
            """
        )
        state['conversation_history'].append(f"assistant: {response}")
        return state

    async def analyze_intent(self, state: state):
        """understand user intent"""
        response = await self.llm.generate(
            prompt=f"""
            conversation history: {state['conversation_history']}
            task: analyze user intent
            output format:
            {{
                "intent": "refund/inquiry/complaint/other",
                "confidence": 0.95,
                "details": "specific description"
            }}
            """
        )
        state['current_intent'] = json.loads(response)
        return state

用法

# Initialize system
graph = CustomerServiceGraph()
state_manager = StateManager()
error_handler = ErrorHandler()

async def handle_customer_query(user_id: str, message: str):
    # Load or create state
    state = state_manager.load_state(user_id) or {
        "conversation_history": [],
        "current_intent": None,
        "user_info": {},
        "resolved": False
    }

    # Add user message
    state["conversation_history"].append(f"User: {message}")

    # Execute state machine flow
    try:
        result = await graph.run(state)
        # Save state
        state_manager.save_state(user_id, result)
        return result["conversation_history"][-1]
    except Exception as e:
        return await error_handler.with_retry(
            graph.run,
            state
        )

最佳实践

  1. 陈述设计原则

    • 保持状态简单明了
    • 仅存储必要的信息
    • 考虑序列化要求
  2. 转换逻辑优化

    • 使用条件转换
    • 避免无限循环
    • 设置最大步数限制
  3. 错误处理策略

    • 实施优雅降级
    • 记录详细信息
    • 提供回滚机制
  4. 性能优化

    • 使用异步操作
    • 实现状态缓存
    • 控制状态大小

常见陷阱和解决方案

  1. 状态爆炸

    • 问题:状态太多导致维护困难
    • 解决方案:合并相似的状态,使用状态组合而不是创建新的
  2. 死锁情况

    • 问题:循环状态转换导致任务挂起
    • 解决方案:添加超时机制和强制退出条件
  3. 状态一致性

    • 问题:分布式环境中状态不一致
    • 解决方案:使用分布式锁和事务机制

概括

langgraph 状态机为管理复杂的 ai agent 任务流提供了强大的解决方案:

  • 清晰的任务流程管理
  • 可靠的状态持久性
  • 全面的错误处理
  • 灵活的扩展性

今天带大家了解了的相关知识,希望对你有所帮助;关于文章的技术知识我们会一点点深入介绍,欢迎大家关注golang学习网公众号,一起学习编程~

版本声明
本文转载于:dev.to 如有侵犯,请联系study_golang@163.com删除
如何让文本行末尾的数字或图标在行高大于图标高度时居中显示?如何让文本行末尾的数字或图标在行高大于图标高度时居中显示?
上一篇
如何让文本行末尾的数字或图标在行高大于图标高度时居中显示?
如何远程访问win7?
下一篇
如何远程访问win7?
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    511次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    498次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 千音漫语:智能声音创作助手,AI配音、音视频翻译一站搞定!
    千音漫语
    千音漫语,北京熠声科技倾力打造的智能声音创作助手,提供AI配音、音视频翻译、语音识别、声音克隆等强大功能,助力有声书制作、视频创作、教育培训等领域,官网:https://qianyin123.com
    169次使用
  • MiniWork:智能高效AI工具平台,一站式工作学习效率解决方案
    MiniWork
    MiniWork是一款智能高效的AI工具平台,专为提升工作与学习效率而设计。整合文本处理、图像生成、营销策划及运营管理等多元AI工具,提供精准智能解决方案,让复杂工作简单高效。
    167次使用
  • NoCode (nocode.cn):零代码构建应用、网站、管理系统,降低开发门槛
    NoCode
    NoCode (nocode.cn)是领先的无代码开发平台,通过拖放、AI对话等简单操作,助您快速创建各类应用、网站与管理系统。无需编程知识,轻松实现个人生活、商业经营、企业管理多场景需求,大幅降低开发门槛,高效低成本。
    171次使用
  • 达医智影:阿里巴巴达摩院医疗AI影像早筛平台,CT一扫多筛癌症急慢病
    达医智影
    达医智影,阿里巴巴达摩院医疗AI创新力作。全球率先利用平扫CT实现“一扫多筛”,仅一次CT扫描即可高效识别多种癌症、急症及慢病,为疾病早期发现提供智能、精准的AI影像早筛解决方案。
    173次使用
  • 智慧芽Eureka:更懂技术创新的AI Agent平台,助力研发效率飞跃
    智慧芽Eureka
    智慧芽Eureka,专为技术创新打造的AI Agent平台。深度理解专利、研发、生物医药、材料、科创等复杂场景,通过专家级AI Agent精准执行任务,智能化工作流解放70%生产力,让您专注核心创新。
    187次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码