LangGraph 状态机:管理生产中的复杂代理任务流
来源:dev.to
2024-11-20 09:32:11
0浏览
收藏
本篇文章给大家分享《LangGraph 状态机:管理生产中的复杂代理任务流》,覆盖了文章的常见基础知识,其实一个语言的全部知识点一篇文章是不可能说完的,但希望通过这些问题,让读者对自己的掌握程度有一定的认识(B 数),从而弥补自己的不足,更好的掌握它。

什么是 langgraph?
langgraph是专为llm应用程序设计的工作流编排框架。其核心原则是:
- 将复杂任务分解为状态和转换
- 管理状态转换逻辑
- 任务执行过程中各种异常的处理
想想购物:浏览→添加到购物车→结账→付款。 langgraph 帮助我们有效地管理此类工作流程。
核心概念
1. 国家
状态就像任务执行中的检查点:
from typing import typeddict, list
class shoppingstate(typeddict):
# current state
current_step: str
# cart items
cart_items: list[str]
# total amount
total_amount: float
# user input
user_input: str
class shoppinggraph(stategraph):
def __init__(self):
super().__init__()
# define states
self.add_node("browse", self.browse_products)
self.add_node("add_to_cart", self.add_to_cart)
self.add_node("checkout", self.checkout)
self.add_node("payment", self.payment)
2. 状态转换
状态转换定义任务流的“路线图”:
class shoppingcontroller:
def define_transitions(self):
# add transition rules
self.graph.add_edge("browse", "add_to_cart")
self.graph.add_edge("add_to_cart", "browse")
self.graph.add_edge("add_to_cart", "checkout")
self.graph.add_edge("checkout", "payment")
def should_move_to_cart(self, state: shoppingstate) -> bool:
"""determine if we should transition to cart state"""
return "add to cart" in state["user_input"].lower()
3. 状态持久化
为了保证系统的可靠性,我们需要持久化状态信息:
class statemanager:
def __init__(self):
self.redis_client = redis.redis()
def save_state(self, session_id: str, state: dict):
"""save state to redis"""
self.redis_client.set(
f"shopping_state:{session_id}",
json.dumps(state),
ex=3600 # 1 hour expiration
)
def load_state(self, session_id: str) -> dict:
"""load state from redis"""
state_data = self.redis_client.get(f"shopping_state:{session_id}")
return json.loads(state_data) if state_data else none
4. 错误恢复机制
任何步骤都可能失败,我们需要优雅地处理这些情况:
class errorhandler:
def __init__(self):
self.max_retries = 3
async def with_retry(self, func, state: dict):
"""function execution with retry mechanism"""
retries = 0
while retries < self.max_retries:
try:
return await func(state)
except exception as e:
retries += 1
if retries == self.max_retries:
return self.handle_final_error(e, state)
await self.handle_retry(e, state, retries)
def handle_final_error(self, error, state: dict):
"""handle final error"""
# save error state
state["error"] = str(error)
# rollback to last stable state
return self.rollback_to_last_stable_state(state)
现实示例:智能客户服务系统
让我们看一个实际的例子——智能客服系统:
from langgraph.graph import stategraph, state
class customerservicestate(typeddict):
conversation_history: list[str]
current_intent: str
user_info: dict
resolved: bool
class customerservicegraph(stategraph):
def __init__(self):
super().__init__()
# initialize states
self.add_node("greeting", self.greet_customer)
self.add_node("understand_intent", self.analyze_intent)
self.add_node("handle_query", self.process_query)
self.add_node("confirm_resolution", self.check_resolution)
async def greet_customer(self, state: state):
"""greet customer"""
response = await self.llm.generate(
prompt=f"""
conversation history: {state['conversation_history']}
task: generate appropriate greeting
requirements:
1. maintain professional friendliness
2. acknowledge returning customers
3. ask how to help
"""
)
state['conversation_history'].append(f"assistant: {response}")
return state
async def analyze_intent(self, state: state):
"""understand user intent"""
response = await self.llm.generate(
prompt=f"""
conversation history: {state['conversation_history']}
task: analyze user intent
output format:
{{
"intent": "refund/inquiry/complaint/other",
"confidence": 0.95,
"details": "specific description"
}}
"""
)
state['current_intent'] = json.loads(response)
return state
用法
# Initialize system
graph = CustomerServiceGraph()
state_manager = StateManager()
error_handler = ErrorHandler()
async def handle_customer_query(user_id: str, message: str):
# Load or create state
state = state_manager.load_state(user_id) or {
"conversation_history": [],
"current_intent": None,
"user_info": {},
"resolved": False
}
# Add user message
state["conversation_history"].append(f"User: {message}")
# Execute state machine flow
try:
result = await graph.run(state)
# Save state
state_manager.save_state(user_id, result)
return result["conversation_history"][-1]
except Exception as e:
return await error_handler.with_retry(
graph.run,
state
)
最佳实践
-
陈述设计原则
- 保持状态简单明了
- 仅存储必要的信息
- 考虑序列化要求
-
转换逻辑优化
- 使用条件转换
- 避免无限循环
- 设置最大步数限制
-
错误处理策略
- 实施优雅降级
- 记录详细信息
- 提供回滚机制
-
性能优化
- 使用异步操作
- 实现状态缓存
- 控制状态大小
常见陷阱和解决方案
-
状态爆炸
- 问题:状态太多导致维护困难
- 解决方案:合并相似的状态,使用状态组合而不是创建新的
-
死锁情况
- 问题:循环状态转换导致任务挂起
- 解决方案:添加超时机制和强制退出条件
-
状态一致性
- 问题:分布式环境中状态不一致
- 解决方案:使用分布式锁和事务机制
概括
langgraph 状态机为管理复杂的 ai agent 任务流提供了强大的解决方案:
- 清晰的任务流程管理
- 可靠的状态持久性
- 全面的错误处理
- 灵活的扩展性
今天带大家了解了的相关知识,希望对你有所帮助;关于文章的技术知识我们会一点点深入介绍,欢迎大家关注golang学习网公众号,一起学习编程~
版本声明
本文转载于:dev.to 如有侵犯,请联系study_golang@163.com删除
如何让文本行末尾的数字或图标在行高大于图标高度时居中显示?
- 上一篇
- 如何让文本行末尾的数字或图标在行高大于图标高度时居中显示?
- 下一篇
- 如何远程访问win7?
查看更多
最新文章
-
- 文章 · python教程 | 8分钟前 |
- Python函数嵌套调用技巧与应用
- 106浏览 收藏
-
- 文章 · python教程 | 49分钟前 |
- Python继承方法重写全解析
- 227浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Arrow文件高效合并技巧提升rechunk性能
- 168浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Dash多值输入与类型转换技巧详解
- 458浏览 收藏
-
- 文章 · python教程 | 10小时前 |
- NumPy位异或归约操作全解析
- 259浏览 收藏
-
- 文章 · python教程 | 11小时前 |
- Python遍历读取所有文件技巧
- 327浏览 收藏
-
- 文章 · python教程 | 11小时前 |
- Python中index的作用及使用方法
- 358浏览 收藏
-
- 文章 · python教程 | 11小时前 |
- Python快速访问嵌套字典键值对
- 340浏览 收藏
-
- 文章 · python教程 | 12小时前 |
- Python中ch代表字符的用法解析
- 365浏览 收藏
-
- 文章 · python教程 | 12小时前 |
- NumPy1D近邻查找:向量化优化技巧
- 391浏览 收藏
查看更多
课程推荐
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 500次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 485次学习
查看更多
AI推荐
-
- ChatExcel酷表
- ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
- 3206次使用
-
- Any绘本
- 探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
- 3419次使用
-
- 可赞AI
- 可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
- 3448次使用
-
- 星月写作
- 星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
- 4557次使用
-
- MagicLight
- MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
- 3826次使用
查看更多
相关文章
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览

