在 PyTorch 中展开
来源:dev.to
2024-11-18 21:27:40
0浏览
收藏
偷偷努力,悄无声息地变强,然后惊艳所有人!哈哈,小伙伴们又来学习啦~今天我将给大家介绍《在 PyTorch 中展开》,这篇文章主要会讲到等等知识点,不知道大家对其都有多少了解,下面我们就一起来看一吧!当然,非常希望大家能多多评论,给出合理的建议,我们一起学习,一起进步!
请我喝杯咖啡☕
*备忘录:
- 我的帖子解释了 unflatten()。
- 我的帖子解释了 flatten() 和 ravel()。
- 我的帖子解释了 flatten()。
unflatten() 可以向零个或多个元素的一维或多个 d 张量添加零个或多个维度,得到零个或多个元素的一维或多个 d 张量,如下所示:
*备忘录:
- 初始化的第一个参数是dim(required-type:int)。
- 初始化的第二个参数是 unflattened_size(必需类型:元组或 int 列表)。
- 第一个参数是输入(必需类型:int、float、complex 或 bool 的张量)。 *-1 推断并调整大小。
- unflatten() 和 unflatten() 的区别是:
- unflatten() 具有 unflattened_size 参数,该参数与 unflatten() 的 size 参数相同。
- 基本上,unflatten() 用于定义模型,而 unflatten() 不用于定义模型。
import torch from torch import nn unflatten = nn.Unflatten() unflatten # Unflatten(dim=0, unflattened_size=(6,)) unflatten.dim # 0 unflatten.unflattened_size # (6,) my_tensor = torch.tensor([7, 1, -8, 3, -6, 0]) unflatten = nn.Unflatten(dim=0, unflattened_size=(6,)) unflatten = nn.Unflatten(dim=0, unflattened_size=(-1,)) unflatten = nn.Unflatten(dim=-1, unflattened_size=(6,)) unflatten = nn.Unflatten(dim=-1, unflattened_size=(-1,)) unflatten(input=my_tensor) # tensor([7, 1, -8, 3, -6, 0]) unflatten = nn.Unflatten(dim=0, unflattened_size=(1, 6)) unflatten = nn.Unflatten(dim=0, unflattened_size=(-1, 6)) unflatten = nn.Unflatten(dim=0, unflattened_size=(1, -1)) unflatten = nn.Unflatten(dim=-1, unflattened_size=(1, 6)) unflatten = nn.Unflatten(dim=-1, unflattened_size=(-1, 6)) unflatten = nn.Unflatten(dim=-1, unflattened_size=(1, -1)) unflatten(input=my_tensor) # tensor([[7, 1, -8, 3, -6, 0]]) unflatten = nn.Unflatten(dim=0, unflattened_size=(2, 3)) unflatten = nn.Unflatten(dim=0, unflattened_size=(2, -1)) unflatten = nn.Unflatten(dim=-1, unflattened_size=(2, 3)) unflatten = nn.Unflatten(dim=-1, unflattened_size=(2, -1)) unflatten(input=my_tensor) # tensor([[7, 1, -8], [3, -6, 0]]) unflatten = nn.Unflatten(dim=0, unflattened_size=(3, 2)) unflatten = nn.Unflatten(dim=0, unflattened_size=(3, -1)) unflatten = nn.Unflatten(dim=-1, unflattened_size=(3, 2)) unflatten = nn.Unflatten(dim=-1, unflattened_size=(3, -1)) unflatten(input=my_tensor) # tensor([[7, 1], [-8, 3], [-6, 0]]) unflatten = nn.Unflatten(dim=0, unflattened_size=(6, 1)) unflatten = nn.Unflatten(dim=0, unflattened_size=(6, -1)) unflatten = nn.Unflatten(dim=-1, unflattened_size=(6, 1)) unflatten = nn.Unflatten(dim=-1, unflattened_size=(6, -1)) unflatten(input=my_tensor) # tensor([[7], [1], [-8], [3], [-6], [0]]) unflatten = nn.Unflatten(dim=0, unflattened_size=(1, 2, 3)) unflatten = nn.Unflatten(dim=0, unflattened_size=(-1, 2, 3)) unflatten = nn.Unflatten(dim=0, unflattened_size=(1, -1, 3)) unflatten = nn.Unflatten(dim=0, unflattened_size=(1, 2, -1)) unflatten = nn.Unflatten(dim=-1, unflattened_size=(1, 2, 3)) unflatten = nn.Unflatten(dim=-1, unflattened_size=(-1, 2, 3)) unflatten = nn.Unflatten(dim=-1, unflattened_size=(1, -1, 3)) unflatten = nn.Unflatten(dim=-1, unflattened_size=(1, 2, -1)) unflatten(input=my_tensor) # tensor([[[7, 1, -8], [3, -6, 0]]]) etc my_tensor = torch.tensor([[7, 1, -8], [3, -6, 0]]) unflatten = nn.Unflatten(dim=0, unflattened_size=(2,)) unflatten = nn.Unflatten(dim=0, unflattened_size=(-1,)) unflatten = nn.Unflatten(dim=1, unflattened_size=(3,)) unflatten = nn.Unflatten(dim=1, unflattened_size=(-1,)) unflatten = nn.Unflatten(dim=-1, unflattened_size=(3,)) unflatten = nn.Unflatten(dim=-1, unflattened_size=(-1,)) unflatten = nn.Unflatten(dim=-2, unflattened_size=(2,)) unflatten = nn.Unflatten(dim=-2, unflattened_size=(-1,)) unflatten(input=my_tensor) # tensor([[7, 1, -8], [3, -6, 0]]) unflatten = nn.Unflatten(dim=0, unflattened_size=(1, 2)) unflatten = nn.Unflatten(dim=0, unflattened_size=(-1, 2)) unflatten = nn.Unflatten(dim=-2, unflattened_size=(1, 2)) unflatten = nn.Unflatten(dim=-2, unflattened_size=(-1, 2)) unflatten(input=my_tensor) # tensor([[[7, 1, -8], [3, -6, 0]]]) unflatten = nn.Unflatten(dim=0, unflattened_size=(2, 1)) unflatten = nn.Unflatten(dim=0, unflattened_size=(2, -1)) unflatten = nn.Unflatten(dim=1, unflattened_size=(1, 3)) unflatten = nn.Unflatten(dim=1, unflattened_size=(-1, 3)) unflatten = nn.Unflatten(dim=-1, unflattened_size=(1, 3)) unflatten = nn.Unflatten(dim=-1, unflattened_size=(-1, 3)) unflatten = nn.Unflatten(dim=-2, unflattened_size=(2, 1)) unflatten = nn.Unflatten(dim=-2, unflattened_size=(2, -1)) unflatten(input=my_tensor) # tensor([[[7, 1, -8]], [[3, -6, 0]]]) unflatten = nn.Unflatten(dim=1, unflattened_size=(3, 1)) unflatten = nn.Unflatten(dim=1, unflattened_size=(3, -1)) unflatten = nn.Unflatten(dim=-1, unflattened_size=(3, 1)) unflatten = nn.Unflatten(dim=-1, unflattened_size=(3, -1)) unflatten(input=my_tensor) # tensor([[[7], [1], [-8]], [[3], [-6], [0]]]) unflatten = nn.Unflatten(dim=0, unflattened_size=(1, 1, 2)) unflatten = nn.Unflatten(dim=0, unflattened_size=(-1, 1, 2)) unflatten = nn.Unflatten(dim=0, unflattened_size=(1, -1, 2)) unflatten = nn.Unflatten(dim=0, unflattened_size=(1, 1, -1)) unflatten = nn.Unflatten(dim=-2, unflattened_size=(1, 1, 2)) unflatten = nn.Unflatten(dim=-2, unflattened_size=(-1, 1, 2)) unflatten = nn.Unflatten(dim=-2, unflattened_size=(1, -1, 2)) unflatten = nn.Unflatten(dim=-2, unflattened_size=(1, 1, -1)) unflatten(input=my_tensor) # tensor([[[[7, 1, -8], [3, -6, 0]]]]) unflatten = nn.Unflatten(dim=1, unflattened_size=(1, 1, 3)) unflatten = nn.Unflatten(dim=1, unflattened_size=(-1, 1, 3)) unflatten = nn.Unflatten(dim=1, unflattened_size=(1, -1, 3)) unflatten = nn.Unflatten(dim=1, unflattened_size=(1, 1, -1)) unflatten = nn.Unflatten(dim=-1, unflattened_size=(1, 1, 3)) unflatten = nn.Unflatten(dim=-1, unflattened_size=(-1, 1, 3)) unflatten = nn.Unflatten(dim=-1, unflattened_size=(1, -1, 3)) unflatten = nn.Unflatten(dim=-1, unflattened_size=(1, 1, -1)) unflatten(input=my_tensor) # tensor([[[[7, 1, -8]]], [[[3, -6, 0]]]]) my_tensor = torch.tensor([[7., 1., -8.], [3., -6., 0.]]) unflatten = nn.Unflatten(dim=0, unflattened_size=(2,)) unflatten(input=my_tensor) # tensor([[7., 1., -8.], [3., -6., 0.]]) my_tensor = torch.tensor([[7.+0.j, 1.+0.j, -8.+0.j], [3.+0.j, -6.+0.j, 0.+0.j]]) unflatten = nn.Unflatten(dim=0, unflattened_size=(2,)) unflatten(input=my_tensor) # tensor([[7.+0.j, 1.+0.j, -8.+0.j], # [3.+0.j, -6.+0.j, 0.+0.j]]) my_tensor = torch.tensor([[True, False, True], [False, True, False]]) unflatten = nn.Unflatten(dim=0, unflattened_size=(2,)) unflatten(input=my_tensor) # tensor([[True, False, True], [False, True, False]])
理论要掌握,实操不能落!以上关于《在 PyTorch 中展开》的详细介绍,大家都掌握了吧!如果想要继续提升自己的能力,那么就来关注golang学习网公众号吧!
版本声明
本文转载于:dev.to 如有侵犯,请联系study_golang@163.com删除

- 上一篇
- 如何轻松查看电脑显卡型号及性能

- 下一篇
- 快速解决电脑桌面缺少图标的问题
查看更多
最新文章
-
- 文章 · python教程 | 3分钟前 | Excel 数据分析 数据清洗 Pandas read_excel
- Python用pandas读取Excel方法详解
- 112浏览 收藏
-
- 文章 · python教程 | 44分钟前 |
- Pythonwhile循环详解与使用技巧
- 209浏览 收藏
-
- 文章 · python教程 | 58分钟前 |
- PyCharm图形显示设置详解
- 322浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python操作HDF5及h5py存储教程
- 146浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python连接MongoDB实战教程
- 375浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python知识图谱构建全攻略
- 217浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- PythonTurtlePong碰撞检测全解析
- 400浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- PyCharm图形显示问题解决方法汇总
- 202浏览 收藏
-
- 文章 · python教程 | 1小时前 | Python 深度学习 异常检测 重构误差 Autoencoder
- Python异常检测:Autoencoder实战教程
- 287浏览 收藏
查看更多
课程推荐
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 511次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 498次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
查看更多
AI推荐
-
- 千音漫语
- 千音漫语,北京熠声科技倾力打造的智能声音创作助手,提供AI配音、音视频翻译、语音识别、声音克隆等强大功能,助力有声书制作、视频创作、教育培训等领域,官网:https://qianyin123.com
- 164次使用
-
- MiniWork
- MiniWork是一款智能高效的AI工具平台,专为提升工作与学习效率而设计。整合文本处理、图像生成、营销策划及运营管理等多元AI工具,提供精准智能解决方案,让复杂工作简单高效。
- 156次使用
-
- NoCode
- NoCode (nocode.cn)是领先的无代码开发平台,通过拖放、AI对话等简单操作,助您快速创建各类应用、网站与管理系统。无需编程知识,轻松实现个人生活、商业经营、企业管理多场景需求,大幅降低开发门槛,高效低成本。
- 166次使用
-
- 达医智影
- 达医智影,阿里巴巴达摩院医疗AI创新力作。全球率先利用平扫CT实现“一扫多筛”,仅一次CT扫描即可高效识别多种癌症、急症及慢病,为疾病早期发现提供智能、精准的AI影像早筛解决方案。
- 166次使用
-
- 智慧芽Eureka
- 智慧芽Eureka,专为技术创新打造的AI Agent平台。深度理解专利、研发、生物医药、材料、科创等复杂场景,通过专家级AI Agent精准执行任务,智能化工作流解放70%生产力,让您专注核心创新。
- 176次使用
查看更多
相关文章
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览