在 PyTorch 中展平
来源:dev.to
2024-11-12 11:09:26
0浏览
收藏
本篇文章主要是结合我之前面试的各种经历和实战开发中遇到的问题解决经验整理的,希望这篇《在 PyTorch 中展平》对你有很大帮助!欢迎收藏,分享给更多的需要的朋友学习~
请我喝杯咖啡☕
*备忘录:
- 我的帖子解释了 flatten() 和 ravel()。
- 我的帖子解释了 unflatten()。
flatten() 可以通过从零个或多个元素的 0d 或多个 d 张量中选择维度来移除零个或多个维度,得到零个或多个元素的 1d 或多个 d 张量,如下所示:
*备忘录:
- 初始化的第一个参数是 start_dim(optional-default:1-type:int)。
- 初始化的第二个参数是 end_dim(可选-默认:-1-类型:int)。
- 第一个参数是输入(必需类型:int、float、complex 或 bool 的张量)。
- flatten() 可以将 0d 张量更改为 1d 张量。
- flatten() 对于一维张量没有任何作用。
- flatten() 和 flatten() 的区别是:
- flatten() 的 start_dim 默认值为 1,而 flatten() 的 start_dim 默认值为 0。
- 基本上,flatten() 用于定义模型,而 flatten() 不用于定义模型。
import torch from torch import nn flatten = nn.Flatten() flatten # Flatten(start_dim=1, end_dim=-1) flatten.start_dim # 1 flatten.end_dim # -1 my_tensor = torch.tensor(7) flatten = nn.Flatten(start_dim=0, end_dim=0) flatten = nn.Flatten(start_dim=0, end_dim=-1) flatten = nn.Flatten(start_dim=-1, end_dim=0) flatten = nn.Flatten(start_dim=-1, end_dim=-1) flatten(input=my_tensor) # tensor([7]) my_tensor = torch.tensor([7, 1, -8, 3, -6, 0]) flatten = nn.Flatten(start_dim=0, end_dim=0) flatten = nn.Flatten(start_dim=0, end_dim=-1) flatten = nn.Flatten(start_dim=-1, end_dim=0) flatten = nn.Flatten(start_dim=-1, end_dim=-1) flatten(input=my_tensor) # tensor([7, 1, -8, 3, -6, 0]) my_tensor = torch.tensor([[7, 1, -8], [3, -6, 0]]) flatten = nn.Flatten(start_dim=0, end_dim=1) flatten = nn.Flatten(start_dim=0, end_dim=-1) flatten = nn.Flatten(start_dim=-2, end_dim=1) flatten = nn.Flatten(start_dim=-2, end_dim=-1) flatten(input=my_tensor) # tensor([7, 1, -8, 3, -6, 0]) flatten = nn.Flatten() flatten = nn.Flatten(start_dim=0, end_dim=0) flatten = nn.Flatten(start_dim=-1, end_dim=-1) flatten = nn.Flatten(start_dim=0, end_dim=-2) flatten = nn.Flatten(start_dim=1, end_dim=1) flatten = nn.Flatten(start_dim=1, end_dim=-1) flatten = nn.Flatten(start_dim=-1, end_dim=1) flatten = nn.Flatten(start_dim=-1, end_dim=-1) flatten = nn.Flatten(start_dim=-2, end_dim=0) flatten = nn.Flatten(start_dim=-2, end_dim=-2) flatten(input=my_tensor) # tensor([[7, 1, -8], [3, -6, 0]]) my_tensor = torch.tensor([[[7], [1], [-8]], [[3], [-6], [0]]]) flatten = nn.Flatten(start_dim=0, end_dim=2) flatten = nn.Flatten(start_dim=0, end_dim=-1) flatten = nn.Flatten(start_dim=-3, end_dim=2) flatten = nn.Flatten(start_dim=-3, end_dim=-1) flatten(input=my_tensor) # tensor([7, 1, -8, 3, -6, 0]) flatten = nn.Flatten(start_dim=0, end_dim=0) flatten = nn.Flatten(start_dim=0, end_dim=-3) flatten = nn.Flatten(start_dim=1, end_dim=1) flatten = nn.Flatten(start_dim=1, end_dim=-2) flatten = nn.Flatten(start_dim=2, end_dim=2) flatten = nn.Flatten(start_dim=2, end_dim=-1) flatten = nn.Flatten(start_dim=-1, end_dim=2) flatten = nn.Flatten(start_dim=-1, end_dim=-1) flatten = nn.Flatten(start_dim=-2, end_dim=1) flatten = nn.Flatten(start_dim=-2, end_dim=-2) flatten = nn.Flatten(start_dim=-3, end_dim=0) flatten = nn.Flatten(start_dim=-3, end_dim=-3) flatten(input=my_tensor) # tensor([[[7], [1], [-8]], [[3], [-6], [0]]]) flatten = nn.Flatten(start_dim=0, end_dim=1) flatten = nn.Flatten(start_dim=0, end_dim=-2) flatten = nn.Flatten(start_dim=-3, end_dim=1) flatten = nn.Flatten(start_dim=-3, end_dim=-2) flatten(input=my_tensor) # tensor([[7], [1], [-8], [3], [-6], [0]]) flatten = nn.Flatten() flatten = nn.Flatten(start_dim=1, end_dim=2) flatten = nn.Flatten(start_dim=1, end_dim=-1) flatten = nn.Flatten(start_dim=-2, end_dim=2) flatten = nn.Flatten(start_dim=-2, end_dim=-1) flatten(input=my_tensor) # tensor([[7, 1, -8], [3, -6, 0]]) my_tensor = torch.tensor([[[7.], [1.], [-8.]], [[3.], [-6.], [0.]]]) flatten = nn.Flatten() flatten(input=my_tensor) # tensor([[7., 1., -8.], [3., -6., 0.]]) my_tensor = torch.tensor([[[7.+0.j], [1.+0.j], [-8.+0.j]], [[3.+0.j], [-6.+0.j], [0.+0.j]]]) flatten = nn.Flatten() flatten(input=my_tensor) # tensor([[7.+0.j, 1.+0.j, -8.+0.j], # [3.+0.j, -6.+0.j, 0.+0.j]]) my_tensor = torch.tensor([[[True], [False], [True]], [[False], [True], [False]]]) flatten = nn.Flatten() flatten(input=my_tensor) # tensor([[True, False, True], # [False, True, False]])
以上就是《在 PyTorch 中展平》的详细内容,更多关于的资料请关注golang学习网公众号!
版本声明
本文转载于:dev.to 如有侵犯,请联系study_golang@163.com删除

- 上一篇
- 实时设计与编辑器是如何实现的?

- 下一篇
- 掌阅电脑:改变您的阅读方式
查看更多
最新文章
-
- 文章 · python教程 | 4分钟前 |
- VSCode配置Python:插件推荐与调试技巧
- 167浏览 收藏
-
- 文章 · python教程 | 6分钟前 |
- FastAPI在Python中依赖注入的使用技巧
- 445浏览 收藏
-
- 文章 · python教程 | 43分钟前 | JSON 数据处理 beautifulsoup Pandas xml.etree.ElementTree
- Python爬虫数据处理实用技巧及应用
- 112浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- 获取淘宝服务器时间的Python代码实战
- 460浏览 收藏
-
- 文章 · python教程 | 1小时前 | 工厂模式 单例模式 类方法 @classmethod 类变量
- Python类方法定义的终极攻略
- 269浏览 收藏
-
- 文章 · python教程 | 1小时前 | scikit-learn DBSCAN 数据预处理 K-means 轮廓系数
- Python聚类分析教程与实战技巧分享
- 259浏览 收藏
-
- 文章 · python教程 | 2小时前 | 性能优化 数据清洗 Pandas pivot_table 数据透视表
- Python数据透视表的实现方法及技巧
- 127浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- PythonORM框架使用方法与实用技巧
- 491浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- Python中@property装饰器的巧妙应用技巧
- 489浏览 收藏
-
- 文章 · python教程 | 2小时前 | 性能 数据处理 可迭代对象 zip() itertools.zip_longest
- Pythonzip()函数使用技巧与示例详解
- 298浏览 收藏
查看更多
课程推荐
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
查看更多
AI推荐
-
- 笔灵AI生成答辩PPT
- 探索笔灵AI生成答辩PPT的强大功能,快速制作高质量答辩PPT。精准内容提取、多样模板匹配、数据可视化、配套自述稿生成,让您的学术和职场展示更加专业与高效。
- 28次使用
-
- 知网AIGC检测服务系统
- 知网AIGC检测服务系统,专注于检测学术文本中的疑似AI生成内容。依托知网海量高质量文献资源,结合先进的“知识增强AIGC检测技术”,系统能够从语言模式和语义逻辑两方面精准识别AI生成内容,适用于学术研究、教育和企业领域,确保文本的真实性和原创性。
- 42次使用
-
- AIGC检测-Aibiye
- AIbiye官网推出的AIGC检测服务,专注于检测ChatGPT、Gemini、Claude等AIGC工具生成的文本,帮助用户确保论文的原创性和学术规范。支持txt和doc(x)格式,检测范围为论文正文,提供高准确性和便捷的用户体验。
- 39次使用
-
- 易笔AI论文
- 易笔AI论文平台提供自动写作、格式校对、查重检测等功能,支持多种学术领域的论文生成。价格优惠,界面友好,操作简便,适用于学术研究者、学生及论文辅导机构。
- 51次使用
-
- 笔启AI论文写作平台
- 笔启AI论文写作平台提供多类型论文生成服务,支持多语言写作,满足学术研究者、学生和职场人士的需求。平台采用AI 4.0版本,确保论文质量和原创性,并提供查重保障和隐私保护。
- 42次使用
查看更多
相关文章
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览