在 PyTorch 中展平
来源:dev.to
2024-11-12 11:09:26
0浏览
收藏
本篇文章主要是结合我之前面试的各种经历和实战开发中遇到的问题解决经验整理的,希望这篇《在 PyTorch 中展平》对你有很大帮助!欢迎收藏,分享给更多的需要的朋友学习~
请我喝杯咖啡☕
*备忘录:
- 我的帖子解释了 flatten() 和 ravel()。
- 我的帖子解释了 unflatten()。
flatten() 可以通过从零个或多个元素的 0d 或多个 d 张量中选择维度来移除零个或多个维度,得到零个或多个元素的 1d 或多个 d 张量,如下所示:
*备忘录:
- 初始化的第一个参数是 start_dim(optional-default:1-type:int)。
- 初始化的第二个参数是 end_dim(可选-默认:-1-类型:int)。
- 第一个参数是输入(必需类型:int、float、complex 或 bool 的张量)。
- flatten() 可以将 0d 张量更改为 1d 张量。
- flatten() 对于一维张量没有任何作用。
- flatten() 和 flatten() 的区别是:
- flatten() 的 start_dim 默认值为 1,而 flatten() 的 start_dim 默认值为 0。
- 基本上,flatten() 用于定义模型,而 flatten() 不用于定义模型。
import torch from torch import nn flatten = nn.Flatten() flatten # Flatten(start_dim=1, end_dim=-1) flatten.start_dim # 1 flatten.end_dim # -1 my_tensor = torch.tensor(7) flatten = nn.Flatten(start_dim=0, end_dim=0) flatten = nn.Flatten(start_dim=0, end_dim=-1) flatten = nn.Flatten(start_dim=-1, end_dim=0) flatten = nn.Flatten(start_dim=-1, end_dim=-1) flatten(input=my_tensor) # tensor([7]) my_tensor = torch.tensor([7, 1, -8, 3, -6, 0]) flatten = nn.Flatten(start_dim=0, end_dim=0) flatten = nn.Flatten(start_dim=0, end_dim=-1) flatten = nn.Flatten(start_dim=-1, end_dim=0) flatten = nn.Flatten(start_dim=-1, end_dim=-1) flatten(input=my_tensor) # tensor([7, 1, -8, 3, -6, 0]) my_tensor = torch.tensor([[7, 1, -8], [3, -6, 0]]) flatten = nn.Flatten(start_dim=0, end_dim=1) flatten = nn.Flatten(start_dim=0, end_dim=-1) flatten = nn.Flatten(start_dim=-2, end_dim=1) flatten = nn.Flatten(start_dim=-2, end_dim=-1) flatten(input=my_tensor) # tensor([7, 1, -8, 3, -6, 0]) flatten = nn.Flatten() flatten = nn.Flatten(start_dim=0, end_dim=0) flatten = nn.Flatten(start_dim=-1, end_dim=-1) flatten = nn.Flatten(start_dim=0, end_dim=-2) flatten = nn.Flatten(start_dim=1, end_dim=1) flatten = nn.Flatten(start_dim=1, end_dim=-1) flatten = nn.Flatten(start_dim=-1, end_dim=1) flatten = nn.Flatten(start_dim=-1, end_dim=-1) flatten = nn.Flatten(start_dim=-2, end_dim=0) flatten = nn.Flatten(start_dim=-2, end_dim=-2) flatten(input=my_tensor) # tensor([[7, 1, -8], [3, -6, 0]]) my_tensor = torch.tensor([[[7], [1], [-8]], [[3], [-6], [0]]]) flatten = nn.Flatten(start_dim=0, end_dim=2) flatten = nn.Flatten(start_dim=0, end_dim=-1) flatten = nn.Flatten(start_dim=-3, end_dim=2) flatten = nn.Flatten(start_dim=-3, end_dim=-1) flatten(input=my_tensor) # tensor([7, 1, -8, 3, -6, 0]) flatten = nn.Flatten(start_dim=0, end_dim=0) flatten = nn.Flatten(start_dim=0, end_dim=-3) flatten = nn.Flatten(start_dim=1, end_dim=1) flatten = nn.Flatten(start_dim=1, end_dim=-2) flatten = nn.Flatten(start_dim=2, end_dim=2) flatten = nn.Flatten(start_dim=2, end_dim=-1) flatten = nn.Flatten(start_dim=-1, end_dim=2) flatten = nn.Flatten(start_dim=-1, end_dim=-1) flatten = nn.Flatten(start_dim=-2, end_dim=1) flatten = nn.Flatten(start_dim=-2, end_dim=-2) flatten = nn.Flatten(start_dim=-3, end_dim=0) flatten = nn.Flatten(start_dim=-3, end_dim=-3) flatten(input=my_tensor) # tensor([[[7], [1], [-8]], [[3], [-6], [0]]]) flatten = nn.Flatten(start_dim=0, end_dim=1) flatten = nn.Flatten(start_dim=0, end_dim=-2) flatten = nn.Flatten(start_dim=-3, end_dim=1) flatten = nn.Flatten(start_dim=-3, end_dim=-2) flatten(input=my_tensor) # tensor([[7], [1], [-8], [3], [-6], [0]]) flatten = nn.Flatten() flatten = nn.Flatten(start_dim=1, end_dim=2) flatten = nn.Flatten(start_dim=1, end_dim=-1) flatten = nn.Flatten(start_dim=-2, end_dim=2) flatten = nn.Flatten(start_dim=-2, end_dim=-1) flatten(input=my_tensor) # tensor([[7, 1, -8], [3, -6, 0]]) my_tensor = torch.tensor([[[7.], [1.], [-8.]], [[3.], [-6.], [0.]]]) flatten = nn.Flatten() flatten(input=my_tensor) # tensor([[7., 1., -8.], [3., -6., 0.]]) my_tensor = torch.tensor([[[7.+0.j], [1.+0.j], [-8.+0.j]], [[3.+0.j], [-6.+0.j], [0.+0.j]]]) flatten = nn.Flatten() flatten(input=my_tensor) # tensor([[7.+0.j, 1.+0.j, -8.+0.j], # [3.+0.j, -6.+0.j, 0.+0.j]]) my_tensor = torch.tensor([[[True], [False], [True]], [[False], [True], [False]]]) flatten = nn.Flatten() flatten(input=my_tensor) # tensor([[True, False, True], # [False, True, False]])
以上就是《在 PyTorch 中展平》的详细内容,更多关于的资料请关注golang学习网公众号!
版本声明
本文转载于:dev.to 如有侵犯,请联系study_golang@163.com删除

- 上一篇
- 实时设计与编辑器是如何实现的?

- 下一篇
- 掌阅电脑:改变您的阅读方式
查看更多
最新文章
-
- 文章 · python教程 | 17分钟前 |
- 数据类型转换技巧全解析
- 490浏览 收藏
-
- 文章 · python教程 | 22分钟前 | 配置文件 日志配置 日志级别 handler Pythonlogging
- Python日志配置技巧与优化方法
- 385浏览 收藏
-
- 文章 · python教程 | 26分钟前 |
- PythonVR开发环境配置详解
- 264浏览 收藏
-
- 文章 · python教程 | 29分钟前 |
- 正则表达式预定义字符类详解
- 188浏览 收藏
-
- 文章 · python教程 | 39分钟前 | difflib 文档比对
- Pythondifflib库使用全解析
- 409浏览 收藏
-
- 文章 · python教程 | 53分钟前 |
- 身份证验证正则表达式大全
- 209浏览 收藏
-
- 文章 · python教程 | 55分钟前 |
- 动态导入模块错误:ImportError与ModuleNotFoundError区别详解
- 100浏览 收藏
-
- 文章 · python教程 | 57分钟前 |
- 正向预查与负向预查区别解析
- 491浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python图片处理进阶技巧:PIL库全解析
- 162浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python情感分析教程:TextBlob实战教程
- 254浏览 收藏
查看更多
课程推荐
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
查看更多
AI推荐
-
- 边界AI平台
- 探索AI边界平台,领先的智能AI对话、写作与画图生成工具。高效便捷,满足多样化需求。立即体验!
- 14次使用
-
- 免费AI认证证书
- 科大讯飞AI大学堂推出免费大模型工程师认证,助力您掌握AI技能,提升职场竞争力。体系化学习,实战项目,权威认证,助您成为企业级大模型应用人才。
- 37次使用
-
- 茅茅虫AIGC检测
- 茅茅虫AIGC检测,湖南茅茅虫科技有限公司倾力打造,运用NLP技术精准识别AI生成文本,提供论文、专著等学术文本的AIGC检测服务。支持多种格式,生成可视化报告,保障您的学术诚信和内容质量。
- 163次使用
-
- 赛林匹克平台(Challympics)
- 探索赛林匹克平台Challympics,一个聚焦人工智能、算力算法、量子计算等前沿技术的赛事聚合平台。连接产学研用,助力科技创新与产业升级。
- 239次使用
-
- 笔格AIPPT
- SEO 笔格AIPPT是135编辑器推出的AI智能PPT制作平台,依托DeepSeek大模型,实现智能大纲生成、一键PPT生成、AI文字优化、图像生成等功能。免费试用,提升PPT制作效率,适用于商务演示、教育培训等多种场景。
- 183次使用
查看更多
相关文章
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览