当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > 从结构准确预测蛋白质功能,东北大学「CNN+GCN」统一框架,优于现有方法

从结构准确预测蛋白质功能,东北大学「CNN+GCN」统一框架,优于现有方法

来源:机器之心 2024-11-11 19:06:24 0浏览 收藏

大家好,今天本人给大家带来文章《从结构准确预测蛋白质功能,东北大学「CNN+GCN」统一框架,优于现有方法》,文中内容主要涉及到,如果你对科技周边方面的知识点感兴趣,那就请各位朋友继续看下去吧~希望能真正帮到你们,谢谢!

从结构准确预测蛋白质功能,东北大学「CNN+GCN」统一框架,优于现有方法

编辑 | KX

蛋白质在生物体内扮演着不可或缺的角色,准确预测其功能对于实际应用至关重要。尽管高通量技术促进了蛋白质序列数据的激增,但揭示蛋白质的确切功能仍然需要大量时间和资源。目前,许多方法都依赖于蛋白质序列进行预测,而针对蛋白质结构的方法很少。

为了应对这些挑战,东北大学的研究人员从蛋白质结构出发,提出将卷积神经网络 (CNN)和图卷积网络 (GCN)结合成一个统一框架,称为双模型自适应权重融合网络 (Two-model Adaptive Weight Fusion Network,TAWFN),用于蛋白质功能预测。

TAWFN 在预测蛋白质结构功能方面表现出了良好的性能,优于现有方法。

相关研究以「TAWFN: a deep learning framework for protein function prediction」为题,于 9 月 23 日发布在《Bioinformatics》上。

从结构准确预测蛋白质功能,东北大学「CNN+GCN」统一框架,优于现有方法

论文链接:https://academic.oup.com/bioinformatics/article/40/10/btae571/7766190

单独使用 CNN、GCN 预测蛋白功能的缺陷

准确识别蛋白质功能有助于更深入地了解疾病机制,并有望发现新的治疗靶点。

开发一种准确有效的蛋白质功能预测方法至关重要。当前预测蛋白质功能的方法主要集中在三个领域:蛋白质序列、蛋白质结构和蛋白质-蛋白质相互作用网络。

当前针对蛋白质结构的方法很少,通常单独使用卷积神经网络 (CNN) 或图卷积网络 (GCN)。单独使用 CNN 或 GCN 存在以下问题:

  • 使用 CNN 时可能会发生信息丢失,因为它们的局部接受场可能无法捕捉蛋白质的整体结构。如果关键特征分布在很大的区域,CNN 可能会因为只关注局部区域而错过它们。同样,对于 GCN,如果蛋白质结构具有图卷积层无法完全捕捉的复杂关系,则会导致蛋白质特征的表示不完整。
  • GCN 更适合处理图结构数据,而 CNN 更适合序列数据。仅使用其中一个网络可能无法完全捕获蛋白质中的各种信息,从而导致特征表示受限。当蛋白质结构同时包含序列和图信息时,仅依赖一种类型的网络无法充分利用这些不同的来源,从而限制了对蛋白质结构的全面理解。

TAWFN:用于蛋白质功能预测

为了解决这些问题,东北大学研究人员提出了一种新型蛋白质功能预测方法 TAWFN。该方法集成了 CNN 和 GCN,同时利用了蛋白质结构和蛋白质语言模型。对蛋白质结构进行处理,得到相应的蛋白质序列。

研究的主要贡献总结如下:

  • 在 GCN 方面,使用处理后的蛋白质序列特征和蛋白质接触图构建图形输入网络。使用 GCN 编码器来捕获短程信息,并引入 Transformers 来捕获长程信息。为了更好地理解拓扑语义,利用注意机制来生成图表示。
  • 在卷积网络方面,使用处理后的蛋白质序列特征作为输入。使用多层卷积编码器,其中多个卷积层级联。此外,将特征金字塔结构与多尺度深度特征提取器集成在一起以捕获局部特征。此外,引入了多头注意机制来捕获多尺度局部特征之间的长程依赖关系。
  • 通过采用自适应权重计算,将两个网络的初步预测结果融合,得到最终的预测结果。
  • 通过大量实验,将 TAWFN 与基线方法进行比较,结果表明,TAWFN 的性能超越了其他最先进的方法。模型还表现出出色的通用性和可解释性,表明结合两种方法可以提高效率。

具体而言,TAWFN 的结构如下图所示,主要由四个模块组成:(1)输入数据生成模块:该模块生成蛋白质接触图和序列编码特征,包括 ESM-1b 编码和独热编码。(2)基于 GCN 的 AGCN 模块:该模块包括两个子模块 AGCN1 和 AGCN2,两个子模块在处理不同的输入时共享同一个 AGCN 网络。它产生初步的预测结果从结构准确预测蛋白质功能,东北大学「CNN+GCN」统一框架,优于现有方法。(3)基于 CNN 的 MCNN 模块:该模块生成初步的预测结果从结构准确预测蛋白质功能,东北大学「CNN+GCN」统一框架,优于现有方法。(4)自适应融合模块:该模块通过计算将两个初步预测结果,图片图片融合,生成最终的预测分数。

从结构准确预测蛋白质功能,东北大学「CNN+GCN」统一框架,优于现有方法

图示:TAWFN 模型图。(来源:论文)

TAWFN 与其他最先进方法的比较

为了评估方法的有效性,研究人员在 PDBset 和 AFset 数据集上进行了实验。主要使用指标 Fmax、Smin 和 AUPR 来评估方法的性能。Fmax 指标表示在所有预测阈值上计算出的最大 F 值。Smin 表示预测注释和真实注释之间的语义距离,考虑到每个函数的信息内容。AUPR 使用梯形规则近似计算精确度-召回率曲线下的面积,评估模型在不同预测阈值上的性能。Smin 值越低越好,而 Fmax 和 AUPR 值越高则表示性能越好。

为了评估方法的有效性,研究人员在 PDBset 和 AFset 数据集上进行了实验。将 TAWFN 方法与几种基线方法进行了比较,包括 Blast、FunFam、DeepGO、DeepGOPlus、DeepFRI、GAT-GO、ATGO、SPROF-GO、DeepGO-SE 和 HEAL。

对于分子功能、生物过程和细胞成分任务,TAWFN 的精确召回曲线下面积 (AUPR) 值分别为 0.718、0.385 和 0.488,对应的 Fmax 得分分别为 0.762、0.628 和 0.693,Smin 得分分别为 0.326、0.483 和 0.454。

从结构准确预测蛋白质功能,东北大学「CNN+GCN」统一框架,优于现有方法

这些结果超越了基于 GCN 的最佳方法 HEAL 的性能。这表明结合了 GCN 和 CNN 的 TAWFN 可以更全面地学习蛋白质结构内的特征。此外,AGCN 中的多头注意力机制(MHA)通过图池化有效地学习蛋白质图特征,而 MCNN 中的 MCAM 则捕获蛋白质序列的全局特征。这些因素有助于 TAWFN 在蛋白质功能预测中的有效性。

消融研究

针对 MCNN 和 AGCN,研究人员设计了消融实验来验证二者结合的有效性,并验证了 LSTM 在 AGCN 中的作用。结果如表 2 所示。

从结构准确预测蛋白质功能,东北大学「CNN+GCN」统一框架,优于现有方法

可以观察到,MCNN 的性能优于 AGCN,说明 MCNN 中 MCAM 产生的全局信息有利于蛋白质预测。而且,当 MCNN 和 AGCN 在网络中结合时,性能优于每个模块单独预测。这表明这种组合不仅从局部和全局的角度提高了特征的学习,而且还注重细节。总体而言,TAWFN 方法对蛋白质功能预测性能有增强作用。

研究人员表示:「在未来的研究中,我们的目标是引入更多可学习的特征,利用多视图技术,并预测新的蛋白质结构。」

今天带大家了解了的相关知识,希望对你有所帮助;关于科技周边的技术知识我们会一点点深入介绍,欢迎大家关注golang学习网公众号,一起学习编程~

版本声明
本文转载于:机器之心 如有侵犯,请联系study_golang@163.com删除
Java程序抛出ClassNotFoundException异常,重启后消失,是怎么回事? 
Java程序抛出ClassNotFoundException异常,重启后消失,是怎么回事?
上一篇
Java程序抛出ClassNotFoundException异常,重启后消失,是怎么回事?
Go 结构体匿名字面值:如何理解和使用?
下一篇
Go 结构体匿名字面值:如何理解和使用?
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 笔灵AI生成答辩PPT:高效制作学术与职场PPT的利器
    笔灵AI生成答辩PPT
    探索笔灵AI生成答辩PPT的强大功能,快速制作高质量答辩PPT。精准内容提取、多样模板匹配、数据可视化、配套自述稿生成,让您的学术和职场展示更加专业与高效。
    30次使用
  • 知网AIGC检测服务系统:精准识别学术文本中的AI生成内容
    知网AIGC检测服务系统
    知网AIGC检测服务系统,专注于检测学术文本中的疑似AI生成内容。依托知网海量高质量文献资源,结合先进的“知识增强AIGC检测技术”,系统能够从语言模式和语义逻辑两方面精准识别AI生成内容,适用于学术研究、教育和企业领域,确保文本的真实性和原创性。
    45次使用
  • AIGC检测服务:AIbiye助力确保论文原创性
    AIGC检测-Aibiye
    AIbiye官网推出的AIGC检测服务,专注于检测ChatGPT、Gemini、Claude等AIGC工具生成的文本,帮助用户确保论文的原创性和学术规范。支持txt和doc(x)格式,检测范围为论文正文,提供高准确性和便捷的用户体验。
    40次使用
  • 易笔AI论文平台:快速生成高质量学术论文的利器
    易笔AI论文
    易笔AI论文平台提供自动写作、格式校对、查重检测等功能,支持多种学术领域的论文生成。价格优惠,界面友好,操作简便,适用于学术研究者、学生及论文辅导机构。
    53次使用
  • 笔启AI论文写作平台:多类型论文生成与多语言支持
    笔启AI论文写作平台
    笔启AI论文写作平台提供多类型论文生成服务,支持多语言写作,满足学术研究者、学生和职场人士的需求。平台采用AI 4.0版本,确保论文质量和原创性,并提供查重保障和隐私保护。
    43次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码