编写高效且可读的 Python 代码的强大技术
本篇文章主要是结合我之前面试的各种经历和实战开发中遇到的问题解决经验整理的,希望这篇《编写高效且可读的 Python 代码的强大技术》对你有很大帮助!欢迎收藏,分享给更多的需要的朋友学习~
python 以其简单性和多功能性而闻名,但即使是经验丰富的开发人员也能从采用最大化性能和可读性的最佳实践中受益。随着数据科学、机器学习和 python 网络开发的兴起,掌握高效的代码技术已成为在当今快速发展的技术环境中保持竞争力的必须条件。在这里,我们将深入探讨 20 种有效的技术来提高 python 代码的性能和可读性,无论您是在处理复杂的项目还是快速的自动化脚本。
1.使用生成器来节省内存
生成器非常适合在不使用过多内存的情况下处理大型数据集。它们一次生成一份数据,而不是将所有数据都保存在内存中。例如,您可以使用生成器逐行读取大型日志文件。
def read_large_file(file_path): with open(file_path, 'r') as file: for line in file: yield line.strip()
这种方法对于数据处理或批量训练等任务特别有用,在这些任务中,使用有限的内存是必不可少的。
2.使用 .setdefault() 设置默认值
如果您需要使用默认值初始化字典中的键,.setdefault() 可以让您免于手动检查。
inventory = {"jeans": 500, "top": 600} inventory.setdefault("shoes", 0) print(inventory)
这使得管理默认值更加简洁,并且不需要额外的 if 语句。
3.用字典替换 if-elif 链
使用字典来映射函数而不是长的 if-elif 链使代码更干净且更易于维护。
def start(): print("start") def stop(): print("stop") actions = {"start": start, "stop": stop} action = "start" actions.get(action, lambda: print("invalid"))()
这种结构提高了可读性和性能,特别是在大型决策树中。
4.使用计数器简化计数
集合模块中的 counter 类是简化 python 中计数任务(例如频率分析)的好方法。
from collections import counter words = ["apple", "banana", "apple", "orange", "banana"] counts = counter(words) print(counts)
它无需创建自定义计数函数,并且高效且易于使用。
5.通过记忆化优化递归
记忆化存储昂贵的函数调用的结果,这在斐波那契计算等递归算法中特别有用。
from functools import lru_cache @lru_cache(maxsize=1000) def fibonacci(n): if n < 2: return n return fibonacci(n - 1) + fibonacci(n - 2)
这种方法以最少的额外内存为代价降低了时间复杂度。
6.使用装饰器增加灵活性
python 装饰器对于将可重用功能应用于多个函数非常有用,例如日志记录或计时,而无需修改核心逻辑。
import time def timer(func): def wrapper(*args, **kwargs): start_time = time.time() result = func(*args, **kwargs) print(f"{func.__name__} took {time.time() - start_time:.6f} seconds") return result return wrapper @timer def slow_function(): time.sleep(1) slow_function()
7.使用 dataclass 让数据模型变得清晰
python 的数据类通过自动生成 init、repr 和比较方法,使定义简单的数据模型变得更容易且更具可读性。
from dataclasses import dataclass @dataclass class employee: name: str id: int salary: float e = employee("alice", 1, 50000) print(e)
这有助于减少样板代码并保持数据结构清洁和可维护。
8.结构条件与匹配
使用 python 3.10,结构模式匹配允许您匹配复杂的数据结构,而无需冗长的 if-else 语句。
def describe_point(point): match point: case (0, 0): return "origin" case (0, y): return f"on y-axis at {y}" case (x, 0): return f"on x-axis at {x}" case (x, y): return f"point at ({x}, {y})"
9.将 chained and 替换为 all()
要一次验证多个条件,请使用 all() 来保持代码简洁和可读。
fields = ["name", "email", "age"] data = {"name": "alice", "email": "alice@example.com", "age": 25} if all(field in data for field in fields): print("all fields are present")
10。使用列表推导式
列表推导式使循环简洁且富有表现力,特别是对于简单的转换。
squares = [x ** 2 for x in range(10)]
它们比传统循环更高效、更容易阅读。
11。理解和使用生成器表达式
对于不需要列表的情况,请使用生成器表达式以获得更好的内存效率。
sum_of_squares = sum(x ** 2 for x in range(1000))
生成器表达式通过按需生成值来减少内存使用。
12。尝试使用 zip() 进行并行迭代
zip() 函数可以轻松并行迭代多个列表。
names = ["alice", "bob"] ages = [25, 30] for name, age in zip(names, ages): print(f"{name} is {age} years old")
13。使用 with 语句安全地处理文件
with 语句确保文件在套件完成后正确关闭,使其成为文件处理的理想选择。
with open("data.txt") as file: data = file.read()
这简化了资源管理并最大限度地减少发生错误的可能性。
14。通过类型提示添加安全性
类型提示使您的代码更具可读性,并帮助 ide 在运行前检测潜在错误。
def add(a: int, b: int) -> int: return a + b
类型提示提高了可维护性,尤其是在大型代码库中。
15。使用 any() for 或 条件进行简化
要检查列表中的任何条件是否为真,any() 比链式 or 条件更简洁。
permissions = ["read", "write"] if any(permission == "admin" for permission in permissions): print("admin access granted")
16。利用 try- except-else-finally
这种结构允许更清晰的错误处理,并最终增加管理不同场景的灵活性。
try: result = risky_function() except valueerror: print("invalid input") else: print("success:", result) finally: print("operation complete")
17。使用命名元组组织数据
命名元组为元组添加结构,使它们更具可读性和自记录性。
from collections import namedtuple employee = namedtuple("employee", "name id salary") e = employee(name="alice", id=1, salary=50000)
18。使用 f 字符串改进 str 连接
f 字符串比传统的连接方法更快、更易读,尤其是对于复杂的表达式。
name = "alice" print(f"hello, {name}!")
19。使用 itertools 进行高效迭代
itertools 模块提供高效的循环选项,例如生成排列、组合或重复元素。
from itertools import permutations items = [1, 2, 3] for perm in permutations(items): print(perm)
20。使用上下文管理器保持代码整洁
自定义上下文管理器帮助管理资源或清理任务,提高可读性和安全性。
from contextlib import contextmanager @contextmanager def open_file(name): file = open(name, "w") yield file file.close()
通过集成这些技术,您可以编写出不仅更高效而且更易读和可维护的 python 代码。尝试这些技巧,并逐渐将它们融入到您的日常编码实践中。
终于介绍完啦!小伙伴们,这篇关于《编写高效且可读的 Python 代码的强大技术》的介绍应该让你收获多多了吧!欢迎大家收藏或分享给更多需要学习的朋友吧~golang学习网公众号也会发布文章相关知识,快来关注吧!

- 上一篇
- 为什么使用html2canvas生成GIF时,每一帧都是最后一帧?

- 下一篇
- 电脑字体修改的方法和步骤,让你的电脑界面焕然一新
-
- 文章 · python教程 | 2小时前 | Python 数据 异常检测 高维数据 IsolationForest
- PythonIsolationForest异常检测教程
- 256浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- Tkinter动态按钮Lambda处理技巧
- 411浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- Kivy2D游戏碰撞检测技巧分享
- 151浏览 收藏
-
- 文章 · python教程 | 3小时前 |
- Python对接Prometheus:数据采集实战教程
- 321浏览 收藏
-
- 文章 · python教程 | 3小时前 |
- Python创建Google表格后如何管理权限
- 194浏览 收藏
-
- 文章 · python教程 | 3小时前 |
- Python字符串处理全攻略详解
- 396浏览 收藏
-
- 文章 · python教程 | 3小时前 |
- Pythonitertools排列参数技巧解析
- 307浏览 收藏
-
- 文章 · python教程 | 3小时前 |
- Pythonlogging模块使用全攻略
- 337浏览 收藏
-
- 文章 · python教程 | 4小时前 |
- PythonOCR训练工具:Tesseract实战教程
- 157浏览 收藏
-
- 文章 · python教程 | 4小时前 |
- PyCharm中文切换方法详解
- 441浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 511次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 498次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 千音漫语
- 千音漫语,北京熠声科技倾力打造的智能声音创作助手,提供AI配音、音视频翻译、语音识别、声音克隆等强大功能,助力有声书制作、视频创作、教育培训等领域,官网:https://qianyin123.com
- 184次使用
-
- MiniWork
- MiniWork是一款智能高效的AI工具平台,专为提升工作与学习效率而设计。整合文本处理、图像生成、营销策划及运营管理等多元AI工具,提供精准智能解决方案,让复杂工作简单高效。
- 182次使用
-
- NoCode
- NoCode (nocode.cn)是领先的无代码开发平台,通过拖放、AI对话等简单操作,助您快速创建各类应用、网站与管理系统。无需编程知识,轻松实现个人生活、商业经营、企业管理多场景需求,大幅降低开发门槛,高效低成本。
- 184次使用
-
- 达医智影
- 达医智影,阿里巴巴达摩院医疗AI创新力作。全球率先利用平扫CT实现“一扫多筛”,仅一次CT扫描即可高效识别多种癌症、急症及慢病,为疾病早期发现提供智能、精准的AI影像早筛解决方案。
- 192次使用
-
- 智慧芽Eureka
- 智慧芽Eureka,专为技术创新打造的AI Agent平台。深度理解专利、研发、生物医药、材料、科创等复杂场景,通过专家级AI Agent精准执行任务,智能化工作流解放70%生产力,让您专注核心创新。
- 205次使用
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览