强化学习之父Richard Sutton给出一个简单思路,大幅增强所有RL算法
来源:机器之心
2024-11-03 15:42:34
0浏览
收藏
今天golang学习网给大家带来了《强化学习之父Richard Sutton给出一个简单思路,大幅增强所有RL算法》,其中涉及到的知识点包括等等,无论你是小白还是老手,都适合看一看哦~有好的建议也欢迎大家在评论留言,若是看完有所收获,也希望大家能多多点赞支持呀!一起加油学习~
在奖励中减去平均奖励
但这些强化学习方法仍有改进空间。近日,强化学习之父、阿尔伯塔大学教授 Richard Sutton 的团队低调更新了一篇论文,其中提出了一种新的通用思想 Reward Centering,并称该思想适用于几乎所有强化学习算法。这里我们将其译为「奖励聚中」。
该论文是首届强化学习会议(RLC 2024)的入选论文之一。一作 Abhishek Naik 刚刚从阿尔伯塔大学获得博士学位,他是 Sutton 教授的第 12 位博士毕业生。


论文标题:Reward Centering 论文地址:https://arxiv.org/pdf/2405.09999

这里研究的问题是持续性问题,即智能体和环境的交互会无限地进行。智能体的目标是最大化长期获得的平均奖励。为此,该团队考虑了估计每个状态的预期折扣奖励总和的方法:

奖励聚中思想很简单:从奖励中减去实际观察到的奖励的平均值。这样做会让修改后的奖励看起来以均值为中心。
这种以均值为中心的奖励在 bandit 设置中很常见。举个例子,Sutton 和 Barto 在 2018 年的一篇论文中表明,根据观察到的奖励估计和减去平均奖励可以显着提高学习速度。
而这里,该团队证明所有强化学习算法都能享受到这种好处,并且当折现因子 γ 接近 1 时,好处会更大。
奖励聚中之所以这么好,一个底层原因可通过折现价值函数的罗朗级数(Laurent Series)分解来揭示。
折现价值函数可被分解成两部分。其中一部分是一个常数,并不依赖状态或动作,因此并不参与动作选取。
用数学表示的话,对于与折现因子 γ 对应的策略 π 的表格折现价值函数
:
是状态 s 的微分值。它们各自对于遍历 MDP 的定义为:
则是一个误差项,当折现因子变为 1 时变为零。状态值的这种分解也意味着状态-动作值有类似的分解。这种 Laurent 级数分解能解释奖励聚中为何有助于解决 bandit 问题。
在完整的强化学习问题中,与状态无关的偏移可能会相当大。举个例子,图 2 中展示的三状态马尔科夫奖励过程。如果状态从 A 变成 B,则奖励是 +3,否则都是 0。平均奖励为 r(π) = 1。右侧表中给出了三个折现因子的折现状态值。

,也被称为聚中折现值。可以看到,这个已经聚中的值在幅度上要小得多,并且当折现因子增大时,也只会发生轻微变化。这里还给出了微分值以供参考。
这些趋势普遍成立:对于任意问题,折现值的幅度都会随着折现因子接近 1 而急剧增加,而聚中折现值则变化不大,并接近微分值。
从数学上看,聚中折现值是平均聚中奖励的预期折现和:

因此,奖励聚中能够通过两个组件(恒定平均奖励和聚中折现值函数)捕获折现值函数中的所有信息。这种分解非常有价值:
当γ→1时,折现值趋于爆炸,但聚中折现值仍然很小且易于处理。 如果问题的奖励偏移了一个常数 c,那么折现值的幅度就会增加 c/(1 − γ),但聚中折现值会保持不变,因为平均奖励也会增加 c。
使用奖励聚中时,还可以设计出在智能体的生命周期内可以改变折现因子(算法参数)的算法。对于标准折现算法来说,这通常是低效或无效的,因为它们的非聚中值可能会发生巨大变化。相比之下,聚中值可能变化不大,当折现因子接近 1 时,变化会变得微不足道。
当然,为了获得这些潜在好处,首先需要基于数据估计出平均奖励。
简单奖励聚中以及基于价值的奖励聚中
表示 t 个时间步骤后的平均奖励估计,则
。更一般地,可以使用步长参数 βt 来更新该估计:

该团队表明,如果行为策略采取目标策略所做的所有操作,那么可以使用 TD 误差很好地近似目标策略的平均奖励:


无聚中的 TD 学习(蓝色)最终达到了与 oracle 聚中算法(橙色)相同的误差率,这符合预期。
简单聚中方法(绿色)确实有助于更快地降低 RMSVE,但其最终误差率会稍微高一点。这也符合预期,因为平均奖励估计会随时间而变化,导致与非聚中或 oracle 聚中版本相比,更新的变数更大。当 γ 更大时也有类似的趋势。这些实验表明,简单的奖励聚中技术在在策略设置中非常有效,并且对于较大的折扣因子,效果更为明显。
在学习率和渐近误差方面,基于价值的奖励聚中(红色)在在策略问题上与简单聚中差不多。但在离策略问题上,基于价值的聚中能以更快的速度得到更低的 RMSVE,同时最终误差率也差不多。
总体而言,可以观察到奖励聚中可以提高折现奖励预测算法(如 TD 学习)的学习率,尤其是对于较大的折扣因子。虽然简单奖励聚中方法已经相当有效,但基于价值的奖励聚中更适合一般的离策略问题。
此外,该团队还研究了奖励聚中对 Q 学习的影响。具体的理论描述和实验过程请访问原论文。


看起来,奖励聚中这个看起来非常简单的方法确实可以显著提升强化学习算法。你怎么看待这一方法,会在你的研究和应用中尝试它吗?
文中关于工程,RLC 2024的知识介绍,希望对你的学习有所帮助!若是受益匪浅,那就动动鼠标收藏这篇《强化学习之父Richard Sutton给出一个简单思路,大幅增强所有RL算法》文章吧,也可关注golang学习网公众号了解相关技术文章。
版本声明
本文转载于:机器之心 如有侵犯,请联系study_golang@163.com删除
如何实现页面滚轮下滑固定高度一页的效果?
- 上一篇
- 如何实现页面滚轮下滑固定高度一页的效果?
- 下一篇
- 代理 - JavaScript 挑战
查看更多
最新文章
-
- 科技周边 · 人工智能 | 46秒前 |
- 2025年AI工具如何提升销售效率
- 250浏览 收藏
-
- 科技周边 · 人工智能 | 8分钟前 | AI应用
- AI音乐推荐如何实现?Spotify算法解析
- 302浏览 收藏
-
- 科技周边 · 人工智能 | 50分钟前 |
- 即梦AI构图技巧与视角控制教程
- 223浏览 收藏
-
- 科技周边 · 人工智能 | 51分钟前 |
- ChatGPT如何总结YouTube视频?详细教程来了
- 336浏览 收藏
-
- 科技周边 · 人工智能 | 1小时前 |
- 邮件签名工具:提升营销效率的实用技巧
- 106浏览 收藏
-
- 科技周边 · 人工智能 | 1小时前 |
- C代码优化技巧,tinyML提效全解析
- 347浏览 收藏
-
- 科技周边 · 人工智能 | 1小时前 |
- GeminiAI与MakePDF自动化分析教程
- 246浏览 收藏
-
- 科技周边 · 人工智能 | 1小时前 | 虚拟伴侣AI
- AI声线克隆技巧全解析
- 225浏览 收藏
-
- 科技周边 · 人工智能 | 1小时前 | 夸克ai搜索
- 夸克AI搜索历史怎么保存?教程详解
- 170浏览 收藏
-
- 科技周边 · 人工智能 | 1小时前 | Grok Grok系统
- Grok官网首页及最新访问入口
- 443浏览 收藏
-
- 科技周边 · 人工智能 | 2小时前 | 百度AI文心一言
- 文心一言3D建模使用方法详解
- 181浏览 收藏
-
- 科技周边 · 人工智能 | 2小时前 | 蚂蚁阿福
- 蚂蚁阿福怎么用?详细教程分享
- 414浏览 收藏
查看更多
课程推荐
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 500次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 485次学习
查看更多
AI推荐
-
- ChatExcel酷表
- ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
- 3361次使用
-
- Any绘本
- 探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
- 3570次使用
-
- 可赞AI
- 可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
- 3603次使用
-
- 星月写作
- 星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
- 4728次使用
-
- MagicLight
- MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
- 3975次使用
查看更多
相关文章
-
- GPT-4王者加冕!读图做题性能炸天,凭自己就能考上斯坦福
- 2023-04-25 501浏览
-
- 单块V100训练模型提速72倍!尤洋团队新成果获AAAI 2023杰出论文奖
- 2023-04-24 501浏览
-
- ChatGPT 真的会接管世界吗?
- 2023-04-13 501浏览
-
- VR的终极形态是「假眼」?Neuralink前联合创始人掏出新产品:科学之眼!
- 2023-04-30 501浏览
-
- 实现实时制造可视性优势有哪些?
- 2023-04-15 501浏览

