当前位置:首页 > 文章列表 > 文章 > python教程 > Entropix:最大化推理性能的采样技术

Entropix:最大化推理性能的采样技术

来源:dev.to 2024-10-31 09:04:01 0浏览 收藏

从现在开始,我们要努力学习啦!今天我给大家带来《Entropix:最大化推理性能的采样技术》,感兴趣的朋友请继续看下去吧!下文中的内容我们主要会涉及到等等知识点,如果在阅读本文过程中有遇到不清楚的地方,欢迎留言呀!我们一起讨论,一起学习!

entropix:最大化推理性能的采样技术

根据 entropix readme,entropix 使用基于熵的采样方法。本文讲解了基于熵和变熵的具体采样技术。

熵和变熵

让我们首先解释一下熵和变熵,因为它们是决定采样策略的关键因素。

在信息论中,熵是随机变量不确定性的度量。随机变量 x 的熵由以下等式定义:

Entropix:最大化推理性能的采样技术

  • x:离散随机变量。
  • x_i:x 的第 i 个可能状态。
  • p(x_i):状态 x_i 的概率。

当概率分布均匀时,熵最大化。相反,当特定状态比其他状态更有可能出现时,熵就会减少。

变熵

变熵与熵密切相关,代表信息内容的可变性。考虑到随机变量 x 的信息内容 i(x)、熵 h(x) 和方差,变熵 v e(x) 定义如下:

Entropix:最大化推理性能的采样技术

当概率 p(x_i) 变化很大时,变熵变大。当概率均匀时(无论是当分布具有最大熵时,还是当一个值的概率为 1 而所有其他值的概率为 0 时),它会变小。

抽样方法

接下来,让我们探讨一下采样策略如何根据熵和变熵值而变化。

Entropix:最大化推理性能的采样技术

1. 低熵、低变熵 → argmax

在这种情况下,特定令牌的预测概率比其他令牌高得多。由于下一个标记几乎确定,因此使用 argmax

if ent < 0.1 and vent < 0.1:
    return torch.argmax(logits[:, -1], dim=-1, keepdim=true).to(torch.int32)

代码链接

2. 低熵、高变熵 → 分支

当有一定的信心,但存在多种可行的选择时,就会发生这种情况。在这种情况下,分支策略用于从多个选择中进行采样并选择最佳结果。

elif ent < 5.0 and vent > 5.0:
    temp_adj = 1.2 + 0.3 * interaction_strength
    top_k_adj = max(5, int(top_k * (1 + 0.5 * (1 - agreement))))
    return _sample(logits, temperature=min(1.5, temperature * temp_adj), top_p=top_p, top_k=top_k_adj, min_p=min_p, generator=generator)

代码链接

虽然这个策略被称为“分支”,但当前的代码似乎是调整采样范围并选择单个路径。 (如果有人有更多见解,我们将不胜感激。)

3. 高熵、低变熵 → cot 或插入暂停令牌

当下一个标记的预测概率相当均匀时,表明下一个上下文不确定,则插入一个澄清标记来解决歧义。

elif ent > 3.0 and vent < 0.1:
    if not torch.isin(gen_tokens[:,-1], torch.tensor([2564], device=device)).any():
        return torch.tensor([[2564]], dtype=torch.int32, device=device)
    else:
        temp_adj = 1.3 + 0.2 * attn_ent
        return _sample(logits, temperature=min(1.5, temperature * temp_adj), top_p=top_p, top_k=top_k, min_p=min_p, generator=generator)

代码链接

4. 高熵、高变熵 → 重采样

在这种情况下,存在多个上下文,并且下一个标记的预测概率较低。 重采样策略使用更高的温度设置和更低的top-p。

elif ent > 5.0 and vent > 5.0:
    temp_adj = 2.0 + 0.5 * attn_vent
    top_p_adj = max(0.5, top_p - 0.2 * attn_ent)
    return _sample(logits, temperature=max(2.0, temperature * temp_adj), top_p=top_p_adj, top_k=top_k, min_p=min_p, generator=generator)

代码链接

中级案例

如果以上条件均不满足,则执行自适应采样。采取多个样本,根据熵、变熵和注意力信息计算最佳采样分数。

else:
    return adaptive_sample(
        logits,
        metrics,
        gen_tokens,
        n_samples=5,
        base_temp=temperature,
        base_top_p=top_p,
        base_top_k=top_k,
        generator=generator
    )

代码链接


参考

  • entropix 存储库
  • entropix 在做什么?

文中关于的知识介绍,希望对你的学习有所帮助!若是受益匪浅,那就动动鼠标收藏这篇《Entropix:最大化推理性能的采样技术》文章吧,也可关注golang学习网公众号了解相关技术文章。

版本声明
本文转载于:dev.to 如有侵犯,请联系study_golang@163.com删除
修复升级Windows 11内置应用程序无法运行修复升级Windows 11内置应用程序无法运行
上一篇
修复升级Windows 11内置应用程序无法运行
MySQL 中中文加数字的排序机制:如何避免出现错误结果?
下一篇
MySQL 中中文加数字的排序机制:如何避免出现错误结果?
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    543次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    516次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    500次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    485次学习
查看更多
AI推荐
  • ChatExcel酷表:告别Excel难题,北大团队AI助手助您轻松处理数据
    ChatExcel酷表
    ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
    3193次使用
  • Any绘本:开源免费AI绘本创作工具深度解析
    Any绘本
    探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
    3406次使用
  • 可赞AI:AI驱动办公可视化智能工具,一键高效生成文档图表脑图
    可赞AI
    可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
    3436次使用
  • 星月写作:AI网文创作神器,助力爆款小说速成
    星月写作
    星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
    4544次使用
  • MagicLight.ai:叙事驱动AI动画视频创作平台 | 高效生成专业级故事动画
    MagicLight
    MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
    3814次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码