当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > 陶哲轩众包数学项目完成度99.99%:仍未看到AI工具的重大贡献

陶哲轩众包数学项目完成度99.99%:仍未看到AI工具的重大贡献

来源:机器之心 2024-10-26 16:13:58 0浏览 收藏

学习知识要善于思考,思考,再思考!今天golang学习网小编就给大家带来《陶哲轩众包数学项目完成度99.99%:仍未看到AI工具的重大贡献》,以下内容主要包含等知识点,如果你正在学习或准备学习科技周边,就都不要错过本文啦~让我们一起来看看吧,能帮助到你就更好了!

陶哲轩发起的「众包」数学研究项目终于快要迎来胜利时刻!

陶哲轩众包数学项目完成度99.99%:仍未看到AI工具的重大贡献

大约在三周前,陶哲轩提出了一个众包项目,结合专业和业余数学家、自动定理证明器、AI 工具和证明辅助语言 Lean, 来描述与 4694 条 magma(原群) 方程定律相关的蕴含图,这些定律可以使用最多四次 magma 操作调用来表达。也即,需要确定这 4694 条定律之间可能蕴含的陶哲轩众包数学项目完成度99.99%:仍未看到AI工具的重大贡献的真假。

该项目已运行 19 天,从已解决的原始蕴含的角度来看,该项目(截至撰写本文)已完成 99.9963%:待解决的陶哲轩众包数学项目完成度99.99%:仍未看到AI工具的重大贡献蕴含中,陶哲轩众包数学项目完成度99.99%:仍未看到AI工具的重大贡献已被证明为真,陶哲轩众包数学项目完成度99.99%:仍未看到AI工具的重大贡献已被证明为假,只有陶哲轩众包数学项目完成度99.99%:仍未看到AI工具的重大贡献悬而未决。尽管在这个集合中,也有陶哲轩众包数学项目完成度99.99%:仍未看到AI工具的重大贡献蕴含推测为假,但可能很快就正式反驳。

出于编译效率的原因,他们没有在 Lean 中记录这些推测中的每一个证明;只在 Lean 中证明一组较小的蕴含陶哲轩众包数学项目完成度99.99%:仍未看到AI工具的重大贡献,然后通过传递性来暗示一组更广泛的蕴含(例如,使用以下事实:如果方程 X 蕴含方程 Y,且方程 Y 蕴含方程 Z,则方程 X 蕴含方程 Z);他们还将很快利用蕴含图的对偶对称性实现进一步简化。

除了感谢众多志愿者为该项目付出的不懈努力,陶哲轩表示现在拥有许多出色的可视化工具来检查(尚未完成的)蕴含图的各个部分。例如,下图描绘了方程 1491:陶哲轩众包数学项目完成度99.99%:仍未看到AI工具的重大贡献的所有结果,陶哲轩将其昵称为「Oberlix 定律」(它有一个「同伴」——Asterix 定律,即方程 65:陶哲轩众包数学项目完成度99.99%:仍未看到AI工具的重大贡献)。

陶哲轩众包数学项目完成度99.99%:仍未看到AI工具的重大贡献

下面是正在研究的所有方程定律的表格,以及它们蕴含或被蕴含的定律数量。这些界面也与 Lean 有某种程度的集成:例如,你可以单击来尝试证明 Oberlix 定律蕴含方程 359,陶哲轩众包数学项目完成度99.99%:仍未看到AI工具的重大贡献;陶哲轩将此留作一个挑战(Lean 中可以进行四行证明)。

陶哲轩众包数学项目完成度99.99%:仍未看到AI工具的重大贡献

过去几周,陶哲轩了解到其中许多定律以前都出现在文献中,并在下图项目中对这些方程进行介绍。例如,除了非常著名的交换律(公式 43)和结合律(公式 4512)之外,一些方程(比如公式 4、公式 29、公式 381、公式 3722 和公式 3744)出现在一些 Putnam 数学竞赛中;公式 168 定义了一个有趣的结构,被称为「中心群」,学者 Evans 和 Knuth 对其进行了研究,并成为 Knuth-Bendix 完成算法的主要灵感来源;公式 1571 对指数为 2 的阿贝尔群进行了分类。

陶哲轩众包数学项目完成度99.99%:仍未看到AI工具的重大贡献

                                     方程汇总地址:https://github.com/teorth/equational_theories/wiki/Tour-of-selected-equations

陶哲轩表示 Birkhoff 完备定理起了大作用,如果一个方程定律蕴含另一个,那么可以通过有限次数的重写操作来证明,但是所需要的重写次数可能相当长。上面提到的从 方程 1491 推导出 359 的蕴含已经相当有挑战性,需要重写四五次;从方程 1681 推导出 2 的蕴含非常长。尽管如此,标准自动定理证明器(例如 Vampire)完全能够证明这些蕴含中的绝大多数。

更微妙的是反蕴含,他们必须证明一条定律 X 并不蕴含另一条定律 Y。原则上,他们只需展示一个服从 X 但不服从 Y 的 magma。在很大一部分情况下,他们可以简单地搜索小的有限 magma(例如两个、三个或四个元素的 magma)来获得这种反蕴含。但它们并不总是足够的,事实上,他们知道只有通过构造无限的 magma 才能证明反蕴含。

例如,现在已知「Asterix 定律」并不蕴含「Oberlix 定律」,但所有反例必然是无限的。奇怪的是,已知的构造与集合论中著名的强迫技术有某种相似之处,因为他们不断地将「通用」元素添加到(部分)magma 中, 以强迫存在具有某些特定属性的反例,尽管这里的构造肯定比集合论的构造简单得多。

他们还从交换和非交换环中的「线性」magma 构造中获得了可观的收益,比如与「合流」方程定律相关的自由 magma,以及更普遍的具有完整重写系统的定律。因此,未解决的蕴含数继续稳步减少,不过还没有到宣布该项目胜利的时候。

虽然该项目仍在进行中,但陶哲轩对迄今为止取得的进展感到非常满意,而且对该项目的许多希望已经实现。

在科学方面,他们发现一些新技术和构造,可以证明给定的方程理论并不蕴含另一个方程理论,并且还发现一些奇特的代数结构, 如「Asterix」和「Oberlix」,它们具有有趣的特征。除了此处进行系统搜索之外,其他任何方式都可能无法发现它们。参与者非常多样化,包括各个职业阶段的数学家和计算机科学家、以及感兴趣的学生和业余爱好者。Lean 平台在整合人类生成和机器生成的贡献方面效果很好,后者在是迄今为止最大的贡献来源,但许多自动生成的结果首先由人类在特定情况下获得,然后被泛化和形式化(通常由项目的不同成员完成)。

他们仍在提出许多非正式的数学论证,但它们往往在 Lean 中被迅速形式化,此时关于正确性的争议就会消失,从而专注如何最好地部署各种经过验证的技术来解决剩下的问题。

也许陶哲轩目前唯一期待但尚未看到现代 AI 工具的重大贡献,它们正在以多种次要方式应用于该项目,例如通过 GitHub Copilot 等工具来加速编写 Lean 证明、LaTeX 蓝图和其他软件代码。此外一些可视化工具也主要使用 Claude 等大型语言模型共同编写。

对于解决蕴含这一核心任务,更「老式」的自动定理证明器迄今为止已被证明更为优越。然而,剩余 700 个左右蕴含中的大多数都不适合这些旧工具,尤其涉及 Asterix 和 Oberlix 的蕴含让人类合作者困惑了好几天。所以仍然希望看到现代 AI 在完成剩余蕴含中最难、最顽固的部分发挥更积极的作用。

博客地址:https://terrytao.wordpress.com/2024/10/12/the-equational-theories-project-a-brief-tour/

终于介绍完啦!小伙伴们,这篇关于《陶哲轩众包数学项目完成度99.99%:仍未看到AI工具的重大贡献》的介绍应该让你收获多多了吧!欢迎大家收藏或分享给更多需要学习的朋友吧~golang学习网公众号也会发布科技周边相关知识,快来关注吧!

版本声明
本文转载于:机器之心 如有侵犯,请联系study_golang@163.com删除
Java中函数参数的反射Java中函数参数的反射
上一篇
Java中函数参数的反射
PHP函数中异常处理的可用性范围是什么?
下一篇
PHP函数中异常处理的可用性范围是什么?
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    543次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    516次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    500次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    485次学习
查看更多
AI推荐
  • ChatExcel酷表:告别Excel难题,北大团队AI助手助您轻松处理数据
    ChatExcel酷表
    ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
    3186次使用
  • Any绘本:开源免费AI绘本创作工具深度解析
    Any绘本
    探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
    3398次使用
  • 可赞AI:AI驱动办公可视化智能工具,一键高效生成文档图表脑图
    可赞AI
    可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
    3429次使用
  • 星月写作:AI网文创作神器,助力爆款小说速成
    星月写作
    星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
    4535次使用
  • MagicLight.ai:叙事驱动AI动画视频创作平台 | 高效生成专业级故事动画
    MagicLight
    MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
    3807次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码