实施相似性搜索算法
来源:dev.to
2024-10-24 14:27:34
0浏览
收藏
哈喽!大家好,很高兴又见面了,我是golang学习网的一名作者,今天由我给大家带来一篇《实施相似性搜索算法》,本文主要会讲到等等知识点,希望大家一起学习进步,也欢迎大家关注、点赞、收藏、转发! 下面就一起来看看吧!
获取数据
import pandas as pd descripciones = [ 'all users must reset passwords every 90 days.', 'passwords need to be reset by all users every 90 days.', 'admin access should be restricted.', 'passwords must change for users every 90 days.', 'passwords must change for users every 80 days.' ] # cargar el dataset data = pd.dataframe({ 'rule_id': range(1, len(descripciones) + 1), 'description': descripciones })
词汇相似度
from sklearn.feature_extraction.text import tfidfvectorizer from sklearn.metrics.pairwise import cosine_similarity ! # vectorización de las descripciones con tf-idf vectorizer = tfidfvectorizer().fit_transform(data['description']) # calcular la matriz de similitud de coseno cosine_sim_matrix = cosine_similarity(vectorizer) # crear un diccionario para almacenar las relaciones sin duplicados def find_related_rules(matrix, rule_ids, threshold=0.8): related_rules = {} seen_pairs = set() # para evitar duplicados de la forma (a, b) = (b, a) for i in range(len(matrix)): related = [] for j in range(i + 1, len(matrix)): # j comienza en i + 1 para evitar duplicados if matrix[i, j] >= threshold: pair = (rule_ids[i], rule_ids[j]) if pair not in seen_pairs: seen_pairs.add(pair) related.append((rule_ids[j], round(matrix[i, j], 2))) if related: related_rules[rule_ids[i]] = related return related_rules # aplicar la función para encontrar reglas relacionadas related_rules = find_related_rules(cosine_sim_matrix, data['rule_id'].tolist(), threshold=0.8) # mostrar las reglas relacionadas print("reglas relacionadas por similitud:") for rule, relations in related_rules.items(): print(f"rule {rule} es similar a:") for related_rule, score in relations: print(f" - rule {related_rule} con similitud de {score}")
语义相似度
!pip install sentence-transformers from sentence_transformers import SentenceTransformer, util # Load the pre-trained model for generating embeddings model = SentenceTransformer('all-MiniLM-L6-v2') # Generate sentence embeddings for each rule description embeddings = model.encode(data['Description'], convert_to_tensor=True) # Compute the semantic similarity matrix cosine_sim_matrix = util.cos_sim(embeddings, embeddings).cpu().numpy() # Function to find related rules based on semantic similarity def find_related_rules(matrix, rule_ids, threshold=0.8): related_rules = {} seen_pairs = set() # To avoid duplicates of the form (A, B) = (B, A) for i in range(len(matrix)): related = [] for j in range(i + 1, len(matrix)): # Only consider upper triangular matrix if matrix[i, j] >= threshold: pair = (rule_ids[i], rule_ids[j]) if pair not in seen_pairs: seen_pairs.add(pair) related.append((rule_ids[j], round(matrix[i, j], 2))) if related: related_rules[rule_ids[i]] = related return related_rules # Apply the function to find related rules related_rules = find_related_rules(cosine_sim_matrix, data['Rule_ID'].tolist(), threshold=0.8) # Display the related rules print("Reglas relacionadas por similitud semántica:") for rule, relations in related_rules.items(): print(f"Rule {rule} es similar a:") for related_rule, score in relations: print(f" - Rule {related_rule} con similitud de {score}")
到这里,我们也就讲完了《实施相似性搜索算法》的内容了。个人认为,基础知识的学习和巩固,是为了更好的将其运用到项目中,欢迎关注golang学习网公众号,带你了解更多关于的知识点!
版本声明
本文转载于:dev.to 如有侵犯,请联系study_golang@163.com删除

- 上一篇
- 平板电脑光盘怎么放到电脑里?

- 下一篇
- 华硕手机怎么关闭飞行模式?
查看更多
最新文章
-
- 文章 · python教程 | 41秒前 | 数据验证 动态加载
- Python数据验证怎么做?手把手教你动态加载验证规则
- 433浏览 收藏
-
- 文章 · python教程 | 8分钟前 | Python 虚拟环境
- 手把手教你用Python虚拟环境,小白也能快速学会环境隔离
- 387浏览 收藏
-
- 文章 · python教程 | 25分钟前 |
- Pythonwhile循环怎么用?手把手教你写出正确循环结构
- 353浏览 收藏
-
- 文章 · python教程 | 30分钟前 |
- PyCharm怎么设置解释器?手把手教你配置Python解释器
- 311浏览 收藏
-
- 文章 · python教程 | 55分钟前 |
- PyCharm新手必看!手把手教你快速创建第一个项目
- 306浏览 收藏
-
- 文章 · python教程 | 59分钟前 |
- Python小白也能看懂的移动平均实现方法
- 133浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Pythonupper函数怎么用?手把手教你把字符串变大写
- 350浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Pythonsort函数怎么用?手把手教你轻松实现列表排序
- 267浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- Pythonend参数原来是这个意思?小白快进来!
- 314浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- Pythonround函数怎么用?手把手教你轻松实现四舍五入
- 495浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- 手把手教你安装PyCharm社区版,超简单教程来了!
- 204浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- Python如何定义抽象类?超详细教程一次性教会你!
- 440浏览 收藏
查看更多
课程推荐
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
查看更多
AI推荐
-
- 茅茅虫AIGC检测
- 茅茅虫AIGC检测,湖南茅茅虫科技有限公司倾力打造,运用NLP技术精准识别AI生成文本,提供论文、专著等学术文本的AIGC检测服务。支持多种格式,生成可视化报告,保障您的学术诚信和内容质量。
- 90次使用
-
- 赛林匹克平台(Challympics)
- 探索赛林匹克平台Challympics,一个聚焦人工智能、算力算法、量子计算等前沿技术的赛事聚合平台。连接产学研用,助力科技创新与产业升级。
- 98次使用
-
- 笔格AIPPT
- SEO 笔格AIPPT是135编辑器推出的AI智能PPT制作平台,依托DeepSeek大模型,实现智能大纲生成、一键PPT生成、AI文字优化、图像生成等功能。免费试用,提升PPT制作效率,适用于商务演示、教育培训等多种场景。
- 100次使用
-
- 稿定PPT
- 告别PPT制作难题!稿定PPT提供海量模板、AI智能生成、在线协作,助您轻松制作专业演示文稿。职场办公、教育学习、企业服务全覆盖,降本增效,释放创意!
- 96次使用
-
- Suno苏诺中文版
- 探索Suno苏诺中文版,一款颠覆传统音乐创作的AI平台。无需专业技能,轻松创作个性化音乐。智能词曲生成、风格迁移、海量音效,释放您的音乐灵感!
- 94次使用
查看更多
相关文章
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览