为何Redis使用跳表而非红黑树实现SortedSet
本篇文章主要是结合我之前面试的各种经历和实战开发中遇到的问题解决经验整理的,希望这篇《为何Redis使用跳表而非红黑树实现SortedSet》对你有很大帮助!欢迎收藏,分享给更多的需要的朋友学习~
知道跳表(Skip List)是在看关于Redis的书的时候,Redis中的有序集合使用了跳表数据结构。接着就查了一些博客,来学习一下跳表。后面会使用Java代码来简单实现跳表。
什么是跳表
跳表由William Pugh发明,他在论文《Skip lists: a probabilistic alternative to balanced trees》中详细介绍了跳表的数据结构和插入删除等操作,论文是这么介绍跳表的:
Skip lists are a data structure that can be used in place of balanced trees.Skip lists use probabilistic balancing rather than strictly enforced balancing and as a result the algorithms for insertion and deletion in skip lists are much simpler and significantly faster than equivalent algorithms for balanced trees.
也就是说,跳表可以用来替代红黑树,使用概率均衡技术,使得插入、删除操作更简单、更快。先来看论文里的一张图:
观察上图
- a:已排好序的链表,查找一个结点最多需要比较N个结点。
- b:每隔2个结点增加一个指针,指向该结点间距为2的后续结点,那么查找一个结点最多需要比较ceil(N/2)+1个结点。
- c,每隔4个结点增加一个指针,指向该结点间距为4的后续结点,那么查找一个结点最多需要比较ceil(N/4)+1个结点。
- 若每第
2^i
个结点都有一个指向间距为2^i
的后续结点的指针,这样不断增加指针,比较次数会降为log(N)。这样的话,搜索会很快,但插入和删除会很困难。
一个拥有k个指针的结点称为一个k层结点(level k node)。按照上面的逻辑,50%的结点为1层,25%的结点为2层,12.5%的结点为3层…如果每个结点的层数随机选取,但仍服从这样的分布呢(上图e,对比上图d)?
使一个k层结点的第i个指针指向第i层的下一个结点,而不是它后面的第2^(i-1)个结点,那么结点的插入和删除只需要原地修改操作;一个结点的层数,是在它被插入的时候随机选取的,并且永不改变。因为这样的数据结构是基于链表的,并且额外的指针会跳过中间结点,所以作者称之为跳表(Skip Lists)。
二分查找底层依赖数组随机访问的特性,所以只能用数组实现。若数据存储在链表,就没法用二分搜索了?
其实只需稍微改造下链表,就能支持类似“二分”的搜索算法,即跳表(Skip list),支持快速的新增、删除、搜索操作。
Redis中的有序集合(Sorted Set)就是用跳表实现的。我们知道红黑树也能实现快速的插入、删除和查找操作。那Redis 为何不选择红黑树来实现呢?
跳表的意义究竟在于何处?
单链表即使存储的数据有序,若搜索某数据,也只能从头到尾遍历,搜索效率很低,平均时间复杂度是O(n)。
追求极致的程序员就开始想了,那这该如何提高链表结构的搜索效率呢?
若如下图,对链表建立一级“索引”,每两个结点提取一个结点到上一级,把抽出来的那级叫作索引或索引层。图中的down表示down指针,指向下一级结点。
比如要搜索16:
先遍历索引层,当遍历到索引层的13时,发现下一个结点是17,说明目标结点位于这俩结点中间
然后通过down指针,下降到原始链表层,继续遍历
此时只需再遍历2个结点,即可找到16!
原先单链表结构需遍历10个结点,现在只需遍历7个结点即可。可见,加一层索引,所需遍历的结点个数就减少了,搜索效率提升。
若再加层索引,搜索效率是不是更高?于是每两个结点再抽出一个结点到第二级索引。现在搜索16,只需遍历6个结点了!
这里数据量不大,可能你也没感觉到搜索效率ROI高吗。
那数据量就变大一点,现有一64结点链表,给它建立五级的索引。
原来没有索引时,单链表搜索62需遍历62个结点!
现在呢?只需遍历11个!所以你现在能体会到了,当链表长度n很大时,建立索引后,搜索性能显著提升。
这种有多级索引的,可以提高查询效率的链表就是最近火遍面试圈的跳表。
作为严谨的程序员,我们又开始好奇了
跳表的搜索时间复杂度
我们都知道单链表搜索时间复杂度O(n),那如此快的跳表呢?
若链表有n个结点,会有多少级索引呢?假设每两个结点抽出一个结点作为上级索引,则:
- 第一级索引结点个数是n/2
- 第二级n/4第
- 三级n/8
- …
- 第k级就是
n/(2^k)
假设索引有h级,最高级索引有2个结点,可得:
为何Redis要用跳表来实现有序集合,而不是红黑树?
Redis中的有序集合支持的核心操作主要支持:
- 插入一个数据
- 删除一个数据
- 查找一个数据
- 迭代输出有序序列:以上操作,红黑树也能完成,时间复杂度跟跳表一样。
- 按照区间查找数据:红黑树的效率低于跳表。跳表可以做到
O(logn)定位区间的起点,然后在原始链表顺序往后遍历即可。
除了性能,还有其它原因:
- 代码实现比红黑树好懂、好写多了,因为简单就代表可读性好,不易出错
- 跳表更灵活,可通过改变索引构建策略,有效平衡执行效率和内存消耗
因为红黑树比跳表诞生更早,很多编程语言中的Map类型(比如JDK 的 HashMap)都是通过红黑树实现的。业务开发时,直接从JDK拿来用,但跳表没有一个现成的实现,只能自己实现。
跳表的代码实现(Java 版)
数据结构定义
表中的元素使用结点来表示,结点的层数在它被插入时随机计算决定(与表中已有结点数目无关)。
一个i层的结点有i个前向指针(java中使用结点对象数组forward来表示),索引为从1到i。用MaxLevel来记录跳表的最大层数。
跳表的层数为当前所有结点中的最大层数(如果list为空,则层数为1)。
列表头header拥有从1到MaxLevel的前向指针:
public class SkipList<t> { // 最高层数 private final int MAX_LEVEL; // 当前层数 private int listLevel; // 表头 private SkipListNode<t> listHead; // 表尾 private SkipListNode<t> NIL; // 生成randomLevel用到的概率值 private final double P; // 论文里给出的最佳概率值 private static final double OPTIMAL_P = 0.25; public SkipList() { // 0.25, 15 this(OPTIMAL_P, (int)Math.ceil(Math.log(Integer.MAX_VALUE) / Math.log(1 / OPTIMAL_P)) - 1); } public SkipList(double probability, int maxLevel) { P = probability; MAX_LEVEL = maxLevel; listLevel = 1; listHead = new SkipListNode<t>(Integer.MIN_VALUE, null, maxLevel); NIL = new SkipListNode<t>(Integer.MAX_VALUE, null, maxLevel); for (int i = listHead.forward.length - 1; i >= 0; i--) { listHead.forward[i] = NIL; } } // 内部类 class SkipListNode<t> { int key; T value; SkipListNode[] forward; public SkipListNode(int key, T value, int level) { this.key = key; this.value = value; this.forward = new SkipListNode[level]; } } } </t></t></t></t></t></t>
搜索算法
按key搜索,找到返回该key对应的value,未找到则返回null。
通过遍历forward数组来需找特定的searchKey。假设skip list的key按照从小到大的顺序排列,那么从跳表的当前最高层listLevel开始寻找searchKey。在某一层找到一个非小于searchKey的结点后,跳到下一层继续找,直到最底层为止。那么根据最后搜索停止位置的下一个结点,就可以判断searchKey在不在跳表中。
在跳表中找8的过程:
插入和删除算法
都是通过查找与连接(search and splice):
维护一个update数组,在搜索结束之后,update[i]保存的是待插入/删除结点在第i层的左侧结点。
插入
若key不存在,则插入该key与对应的value;若key存在,则更新value。
如果待插入的结点的层数高于跳表的当前层数listLevel,则更新listLevel。
选择待插入结点的层数randomLevel:
randomLevel只依赖于跳表的最高层数和概率值p。
另一种实现方法为,如果生成的randomLevel大于当前跳表的层数listLevel,那么将randomLevel设置为listLevel+1,这样方便以后的查找,在工程上是可以接受的,但同时也破坏了算法的随机性。
删除
删除特定的key与对应的value。如果待删除的结点为跳表中层数最高的结点,那么删除之后,要更新listLevel。
public class SkipList<t> { // 最高层数 private final int MAX_LEVEL; // 当前层数 private int listLevel; // 表头 private SkipListNode<t> listHead; // 表尾 private SkipListNode<t> NIL; // 生成randomLevel用到的概率值 private final double P; // 论文里给出的最佳概率值 private static final double OPTIMAL_P = 0.25; public SkipList() { // 0.25, 15 this(OPTIMAL_P, (int)Math.ceil(Math.log(Integer.MAX_VALUE) / Math.log(1 / OPTIMAL_P)) - 1); } public SkipList(double probability, int maxLevel) { P = probability; MAX_LEVEL = maxLevel; listLevel = 1; listHead = new SkipListNode<t>(Integer.MIN_VALUE, null, maxLevel); NIL = new SkipListNode<t>(Integer.MAX_VALUE, null, maxLevel); for (int i = listHead.forward.length - 1; i >= 0; i--) { listHead.forward[i] = NIL; } } // 内部类 class SkipListNode<t> { int key; T value; SkipListNode[] forward; public SkipListNode(int key, T value, int level) { this.key = key; this.value = value; this.forward = new SkipListNode[level]; } } public T search(int searchKey) { SkipListNode<t> curNode = listHead; for (int i = listLevel; i > 0; i--) { while (curNode.forward[i].key [] update = new SkipListNode[MAX_LEVEL]; SkipListNode<t> curNode = listHead; for (int i = listLevel - 1; i >= 0; i--) { while (curNode.forward[i].key newNode = new SkipListNode<t>(searchKey, newValue, lvl); for (int i = 0; i [] update = new SkipListNode[MAX_LEVEL]; SkipListNode<t> curNode = listHead; for (int i = listLevel - 1; i >= 0; i--) { while (curNode.forward[i].key 0 && listHead.forward[listLevel - 1] == NIL) { listLevel--; } } } private int randomLevel() { int lvl = 1; while (lvl = 0; i--) { SkipListNode<t> curNode = listHead.forward[i]; while (curNode != NIL) { System.out.print(curNode.key + "->"); curNode = curNode.forward[i]; } System.out.println("NIL"); } } public static void main(String[] args) { SkipList<integer> sl = new SkipList<integer>(); sl.insert(20, 20); sl.insert(5, 5); sl.insert(10, 10); sl.insert(1, 1); sl.insert(100, 100); sl.insert(80, 80); sl.insert(60, 60); sl.insert(30, 30); sl.print(); System.out.println("---"); sl.delete(20); sl.delete(100); sl.print(); } } </integer></integer></t></t></t></t></t></t></t></t></t></t></t>
本篇关于《为何Redis使用跳表而非红黑树实现SortedSet》的介绍就到此结束啦,但是学无止境,想要了解学习更多关于数据库的相关知识,请关注golang学习网公众号!

- 上一篇
- Redis BloomFilter实例讲解

- 下一篇
- 基于Redis的List实现特价商品列表功能
-
- 数据库 · Redis | 2天前 |
- Redis事务怎么用?4步带你快速掌握事务精髓!
- 111浏览 收藏
-
- 数据库 · Redis | 2天前 |
- Redis启动不能访问?保姆级排错+解决方案
- 142浏览 收藏
-
- 数据库 · Redis | 2天前 |
- Redis与RabbitMQ性能对决,这些意想不到的联合场景你压根猜不到!
- 415浏览 收藏
-
- 数据库 · Redis | 2天前 |
- Redis集群分片教学:手把手教你搞定数据分片
- 126浏览 收藏
-
- 数据库 · Redis | 2天前 |
- Redis防火墙规则配置教学,大佬带你玩转最佳实践
- 361浏览 收藏
-
- 数据库 · Redis | 2天前 |
- RedisvsMemcached:哪个更适合你?功能对比与场景实战
- 197浏览 收藏
-
- 数据库 · Redis | 2天前 |
- Redis设置强密码+详细访问控制教程(手把手教学)
- 291浏览 收藏
-
- 数据库 · Redis | 2天前 |
- Redis性能优化!手把手教你定位瓶颈+解决方案
- 380浏览 收藏
-
- 数据库 · Redis | 2天前 |
- Redis+HBase双剑合璧,教你打造超神大数据存储系统!
- 436浏览 收藏
-
- 数据库 · Redis | 2天前 |
- RedisSentinel高可用集群配置超详细教程
- 254浏览 收藏
-
- 数据库 · Redis | 2天前 |
- 手把手教你判断Redis版本该不该升级
- 244浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 茅茅虫AIGC检测
- 茅茅虫AIGC检测,湖南茅茅虫科技有限公司倾力打造,运用NLP技术精准识别AI生成文本,提供论文、专著等学术文本的AIGC检测服务。支持多种格式,生成可视化报告,保障您的学术诚信和内容质量。
- 25次使用
-
- 赛林匹克平台(Challympics)
- 探索赛林匹克平台Challympics,一个聚焦人工智能、算力算法、量子计算等前沿技术的赛事聚合平台。连接产学研用,助力科技创新与产业升级。
- 51次使用
-
- 笔格AIPPT
- SEO 笔格AIPPT是135编辑器推出的AI智能PPT制作平台,依托DeepSeek大模型,实现智能大纲生成、一键PPT生成、AI文字优化、图像生成等功能。免费试用,提升PPT制作效率,适用于商务演示、教育培训等多种场景。
- 58次使用
-
- 稿定PPT
- 告别PPT制作难题!稿定PPT提供海量模板、AI智能生成、在线协作,助您轻松制作专业演示文稿。职场办公、教育学习、企业服务全覆盖,降本增效,释放创意!
- 54次使用
-
- Suno苏诺中文版
- 探索Suno苏诺中文版,一款颠覆传统音乐创作的AI平台。无需专业技能,轻松创作个性化音乐。智能词曲生成、风格迁移、海量音效,释放您的音乐灵感!
- 60次使用
-
- redis复制有可能碰到的问题汇总
- 2023-01-01 501浏览
-
- 使用lua+redis解决发多张券的并发问题
- 2023-01-27 501浏览
-
- Redis应用实例分享:社交媒体平台设计
- 2023-06-21 501浏览
-
- 使用Python和Redis构建日志分析系统:如何实时监控系统运行状况
- 2023-08-08 501浏览
-
- 如何利用Redis和Python实现消息队列功能
- 2023-08-16 501浏览