当前位置:首页 > 文章列表 > 数据库 > Redis > Redis内存回收策略

Redis内存回收策略

来源:脚本之家 2023-01-07 11:46:15 0浏览 收藏

本篇文章向大家介绍《Redis内存回收策略》,主要包括Redis内存回收,具有一定的参考价值,需要的朋友可以参考一下。

概述

Redis也会因为内存不足而产生错误 , 也可能因为回收过久而导致系统长期的停顿,因此掌握执行回收策略十分有必要。在 Redis 的配置文件中,当 Redis 的内存达到规定的最大值时,允许配置 6 种策略中的一种进行淘汰键值,并且将一些键值对进行回收。

maxmemory-policy 参数

# Set a memory usage limit to the specified amount of bytes.
# When the memory limit is reached Redis will try to remove keys
# according to the eviction policy selected (see maxmemory-policy).
#
# If Redis can't remove keys according to the policy, or if the policy is
# set to 'noeviction', Redis will start to reply with errors to commands
# that would use more memory, like SET, LPUSH, and so on, and will continue
# to reply to read-only commands like GET.
#
# This option is usually useful when using Redis as an LRU or LFU cache, or to
# set a hard memory limit for an instance (using the 'noeviction' policy).
#
# WARNING: If you have slaves attached to an instance with maxmemory on,
# the size of the output buffers needed to feed the slaves are subtracted
# from the used memory count, so that network problems / resyncs will
# not trigger a loop where keys are evicted, and in turn the output
# buffer of slaves is full with DELs of keys evicted triggering the deletion
# of more keys, and so forth until the database is completely emptied.
#
# In short... if you have slaves attached it is suggested that you set a lower
# limit for maxmemory so that there is some free RAM on the system for slave
# output buffers (but this is not needed if the policy is 'noeviction').
#
# maxmemory 

# MAXMEMORY POLICY: how Redis will select what to remove when maxmemory
# is reached. You can select among five behaviors:
#
# volatile-lru -> Evict using approximated LRU among the keys with an expire set.
# allkeys-lru -> Evict any key using approximated LRU.
# volatile-lfu -> Evict using approximated LFU among the keys with an expire set.
# allkeys-lfu -> Evict any key using approximated LFU.
# volatile-random -> Remove a random key among the ones with an expire set.
# allkeys-random -> Remove a random key, any key.
# volatile-ttl -> Remove the key with the nearest expire time (minor TTL)
# noeviction -> Don't evict anything, just return an error on write operations.
#
# LRU means Least Recently Used
# LFU means Least Frequently Used
#
# Both LRU, LFU and volatile-ttl are implemented using approximated
# randomized algorithms.
#
# Note: with any of the above policies, Redis will return an error on write
#       operations, when there are no suitable keys for eviction.
#
#       At the date of writing these commands are: set setnx setex append
#       incr decr rpush lpush rpushx lpushx linsert lset rpoplpush sadd
#       sinter sinterstore sunion sunionstore sdiff sdiffstore zadd zincrby
#       zunionstore zinterstore hset hsetnx hmset hincrby incrby decrby
#       getset mset msetnx exec sort
#
# The default is:
#
# maxmemory-policy noeviction

主动清理策略

主动清理策略在Redis 4.0 之前一共实现了 6 种内存淘汰策略,在 4.0 之后,又增加了 2 种策略,总共8种:

【针对设置了过期时间的key做处理】

  • volatile-ttl:在筛选时,会针对设置了过期时间的键值对,根据过期时间的先后进行删除,越早过期的越先被删除。
  • volatile-random:就像它的名称一样,在设置了过期时间的键值对中,进行随机删除。
  • volatile-lru:会使用 LRU 算法筛选设置了过期时间的键值对删除。
  • volatile-lfu:会使用 LFU 算法筛选设置了过期时间的键值对删除

【 针对所有的key做处理】

  • allkeys-random:从所有键值对中随机选择并删除数据。
  • allkeys-lru:使用 LRU 算法在所有数据中进行筛选删除。
  • allkeys-lfu:使用 LFU 算法在所有数据中进行筛选删除。

【 不处理 (默认)】

noeviction:不会剔除任何数据,拒绝所有写入操作并返回客户端错误信息"(error) OOM command not allowed when used memory",此时Redis只响应读操作。

Redis 在默认情况下会采用 noeviction 策略。换句话说,如果内存己满 , 则不再提供写入操作 , 而只提供读取操作 。 显然这往往并不能满足我们的要求,因为对于互联网系统而言 , 常常会涉及数以百万甚至更多的用户 , 所以往往需要设置回收策略。

策略选择

LRU 算法(Least Recently Used,最近最少使用):淘汰很久没被访问过的数据,以最近一次访问时间作为参考

LFU 算法(Least Frequently Used,最不经常使用):淘汰最近一段时间被访问次数最少的数据,以次数作为参考

需要指出的是 : LRU 算法或者 TTL 算法都是不是很精确算法,而是一个近似的算法。 Redis 不会通过对全部的键值对进行比较来确定最精确的时间值,从而确定删除哪个键值对 , 因为这将消耗太多的时间 , 导致回收垃圾执行的时间太长 , 造成服务停顿.

当存在热点数据时,LRU的效率很好,但偶发性的、周期性的批量操作会导致LRU命中率急剧下降,缓存污染情况比较严重。这时使用LFU可能更好点

根据自身业务类型,配置好maxmemory-policy(默认是noeviction),推荐使用volatile-lru。

maxmemory-sample

而在Redis 的默认配置文件中 , 存在着参数 maxmemory-sample

# LRU, LFU and minimal TTL algorithms are not precise algorithms but approximated
# algorithms (in order to save memory), so you can tune it for speed or
# accuracy. For default Redis will check five keys and pick the one that was
# used less recently, you can change the sample size using the following
# configuration directive.
#
# The default of 5 produces good enough results. 10 Approximates very closely
# true LRU but costs more CPU. 3 is faster but not very accurate.
#
# maxmemory-samples 5

当设置 maxmemory-samples越大,则 Redis 删除的就越精确,但是与此同时带来不利的是, Redis 也就需要花更多的时去计算匹配更为精确的值 。

回收超时策略的缺点是必须指明超时的键值对 ,这会给程序开发带来一些设置超时的代码,无疑增加了开发者的工作量。

对所有的键值对进行回收,有可能把正在使用的键值对删掉,增加了存储的不稳定性。

对于垃圾回收的策略,还需要注意的是回收的时间,因为在 Redis 对垃圾的回收期间, 会造成系统缓慢。

因此,控制其回收时间有一定好处,只是这个时间不能过短或过长。过短则会造成回收次数过于频繁,过长则导致系统单次垃圾回收停顿时间过长,都不利于系统的稳定性,这些都需要设计者在实际的工作中进行思考 。

如果不设置最大内存,当 Redis 内存超出物理内存限制时,内存的数据会开始和磁盘产生频繁的交换 (swap),会让 Redis 的性能急剧下降。

以上就是《Redis内存回收策略》的详细内容,更多关于redis的资料请关注golang学习网公众号!

版本声明
本文转载于:脚本之家 如有侵犯,请联系study_golang@163.com删除
Redis缓存IO模型的演进教程示例精讲Redis缓存IO模型的演进教程示例精讲
上一篇
Redis缓存IO模型的演进教程示例精讲
一分钟搞懂Redis的慢查询日志操作
下一篇
一分钟搞懂Redis的慢查询日志操作
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • PPTFake答辩PPT生成器:一键生成高效专业的答辩PPT
    PPTFake答辩PPT生成器
    PPTFake答辩PPT生成器,专为答辩准备设计,极致高效生成PPT与自述稿。智能解析内容,提供多样模板,数据可视化,贴心配套服务,灵活自主编辑,降低制作门槛,适用于各类答辩场景。
    21次使用
  • SEO标题Lovart AI:全球首个设计领域AI智能体,实现全链路设计自动化
    Lovart
    SEO摘要探索Lovart AI,这款专注于设计领域的AI智能体,通过多模态模型集成和智能任务拆解,实现全链路设计自动化。无论是品牌全案设计、广告与视频制作,还是文创内容创作,Lovart AI都能满足您的需求,提升设计效率,降低成本。
    20次使用
  • 美图AI抠图:行业领先的智能图像处理技术,3秒出图,精准无误
    美图AI抠图
    美图AI抠图,依托CVPR 2024竞赛亚军技术,提供顶尖的图像处理解决方案。适用于证件照、商品、毛发等多场景,支持批量处理,3秒出图,零PS基础也能轻松操作,满足个人与商业需求。
    33次使用
  • SEO标题PetGPT:智能桌面宠物程序,结合AI对话的个性化陪伴工具
    PetGPT
    SEO摘要PetGPT 是一款基于 Python 和 PyQt 开发的智能桌面宠物程序,集成了 OpenAI 的 GPT 模型,提供上下文感知对话和主动聊天功能。用户可高度自定义宠物的外观和行为,支持插件热更新和二次开发。适用于需要陪伴和效率辅助的办公族、学生及 AI 技术爱好者。
    34次使用
  • 可图AI图片生成:快手可灵AI2.0引领图像创作新时代
    可图AI图片生成
    探索快手旗下可灵AI2.0发布的可图AI2.0图像生成大模型,体验从文本生成图像、图像编辑到风格转绘的全链路创作。了解其技术突破、功能创新及在广告、影视、非遗等领域的应用,领先于Midjourney、DALL-E等竞品。
    56次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码