Redis中Redisson布隆过滤器的学习
来源:脚本之家
2023-02-18 09:48:34
0浏览
收藏
对于一个数据库开发者来说,牢固扎实的基础是十分重要的,golang学习网就来带大家一点点的掌握基础知识点。今天本篇文章带大家了解《Redis中Redisson布隆过滤器的学习》,主要介绍了布隆过滤器、RedisRedisson,希望对大家的知识积累有所帮助,快点收藏起来吧,否则需要时就找不到了!
简介
本文基于Spring Boot 2.6.6、redisson 3.16.0简单分析Redisson布隆过滤器的使用。
布隆过滤器是一个非常长的二进制向量和一系列随机哈希函数的组合,可用于检索一个元素是否存在;
使用场景如下:
- 解决Redis缓存穿透问题;
- 邮件过滤;
使用
- 建立一个二进制向量,所有位设置0;
- 选择K个散列函数,用于对元素进行K次散列,计算向量的位下标;
- 添加元素:将K个散列函数作用于该元素,生成K个值作为位下标,将向量的对应位设置为1;
- 检索元素:将K个散列函数作用于该元素,生成K个值作为位下标,若向量的对应位都是1,则说明该元素可能存在;否则,该元素肯定不存在;
Demo
依赖
<dependency><groupid>org.springframework.boot</groupid><artifactid>spring-boot-starter-data-redis</artifactid><exclusions><exclusion><groupid>io.lettuce</groupid><artifactid>lettuce-core</artifactid></exclusion></exclusions></dependency><dependency><groupid>redis.clients</groupid><artifactid>jedis</artifactid></dependency><dependency><groupid>org.redisson</groupid><artifactid>redisson</artifactid><version>3.16.0</version></dependency>
测试代码
public class BloomFilterDemo {
public static void main(String[] args) {
Config config = new Config();
config.useSingleServer().setAddress("redis://127.0.0.1:6379");
RedissonClient redissonClient = Redisson.create(config);
RBloomFilter<string> bloomFilter = redissonClient.getBloomFilter("bloom-filter");
// 初始化布隆过滤器
bloomFilter.tryInit(200, 0.01);
List<string> elements = new ArrayList();
for (int i = 0; i bloomFilter, List<string> elements) {
for (int i = 0; i bloomFilter, List<string> elements) {
int counter = 0;
for (String element : elements) {
if (bloomFilter.contains(element)) {
counter++;
}
}
System.out.println(counter);
}
}</string></string></string></string>
简析
初始化
布隆过滤器的初始化方法tryInit有两个参数:
- expectedInsertions:预期的插入元素数量;
- falseProbability:预期的错误率;
布隆过滤器可以明确元素不存在,但对于元素存在的判断是存在错误率的;所以初始化时指定的这两个参数会决定布隆过滤器的向量长度和散列函数的个数;
RedissonBloomFilter.tryInit方法代码如下:
public boolean tryInit(long expectedInsertions, double falseProbability) {
if (falseProbability > 1) {
throw new IllegalArgumentException("Bloom filter false probability can't be greater than 1");
}
if (falseProbability getMaxSize()) {
throw new IllegalArgumentException("Bloom filter size can't be greater than " + getMaxSize() + ". But calculated size is " + size);
}
// 根据元素个数和向量长度计算得到散列函数的个数
hashIterations = optimalNumOfHashFunctions(expectedInsertions, size);
CommandBatchService executorService = new CommandBatchService(commandExecutor);
executorService.evalReadAsync(configName, codec, RedisCommands.EVAL_VOID,
"local size = redis.call('hget', KEYS[1], 'size');" +
"local hashIterations = redis.call('hget', KEYS[1], 'hashIterations');" +
"assert(size == false and hashIterations == false, 'Bloom filter config has been changed')",
Arrays.<object>asList(configName), size, hashIterations);
executorService.writeAsync(configName, StringCodec.INSTANCE,
new RedisCommand<void>("HMSET", new VoidReplayConvertor()), configName,
"size", size, "hashIterations", hashIterations,
"expectedInsertions", expectedInsertions, "falseProbability", BigDecimal.valueOf(falseProbability).toPlainString());
try {
executorService.execute();
} catch (RedisException e) {
if (e.getMessage() == null || !e.getMessage().contains("Bloom filter config has been changed")) {
throw e;
}
readConfig();
return false;
}
return true;
}
private long optimalNumOfBits(long n, double p) {
if (p == 0) {
p = Double.MIN_VALUE;
}
return (long) (-n * Math.log(p) / (Math.log(2) * Math.log(2)));
}
private int optimalNumOfHashFunctions(long n, long m) {
return Math.max(1, (int) Math.round((double) m / n * Math.log(2)));
}</void></object>
添加元素
向布隆过滤器中添加元素时,先使用一系列散列函数根据元素得到K个位下标,然后将向量中位下标对应的位设置为1;
RedissonBloomFilter.add方法代码如下:
public boolean add(T object) {
// 根据带插入元素得到两个long类型散列值
long[] hashes = hash(object);
while (true) {
if (size == 0) {
readConfig();
}
int hashIterations = this.hashIterations;
long size = this.size;
// 得到位下标数组
// 以两个散列值根据指定策略生成hashIterations个散列值,从而得到位下标
long[] indexes = hash(hashes[0], hashes[1], hashIterations, size);
CommandBatchService executorService = new CommandBatchService(commandExecutor);
addConfigCheck(hashIterations, size, executorService);
RBitSetAsync bs = createBitSet(executorService);
for (int i = 0; i result = (List<boolean>) executorService.execute().getResponses();
for (Boolean val : result.subList(1, result.size()-1)) {
if (!val) {
// 元素添加成功
return true;
}
}
// 元素已存在
return false;
} catch (RedisException e) {
if (e.getMessage() == null || !e.getMessage().contains("Bloom filter config has been changed")) {
throw e;
}
}
}
}
private long[] hash(Object object) {
ByteBuf state = encode(object);
try {
return Hash.hash128(state);
} finally {
state.release();
}
}
private long[] hash(long hash1, long hash2, int iterations, long size) {
long[] indexes = new long[iterations];
long hash = hash1;
for (int i = 0; i
<p><code>hash(long hash1, long hash2, int iterations, long size)</code>方法中,利用根据元素得到的两个散列值,生成一系列散列函数,然后得到位下标数组;</p>
<h3>检索元素</h3>
<p>检索布隆过滤器中是否存在指定元素时,先使用一系列散列函数根据元素得到K个位下标,然后判断向量中位下标对应的位是否为1,若存在一个不为1,则该元素不存在;否则认为存在;<br>RedissonBloomFilter.contains方法代码如下:</p>
<pre class="brush:java;">public boolean contains(T object) {
// 根据带插入元素得到两个long类型散列值
long[] hashes = hash(object);
while (true) {
if (size == 0) {
readConfig();
}
int hashIterations = this.hashIterations;
long size = this.size;
// 得到位下标数组
// 以两个散列值根据指定策略生成hashIterations个散列值,从而得到位下标
long[] indexes = hash(hashes[0], hashes[1], hashIterations, size);
CommandBatchService executorService = new CommandBatchService(commandExecutor);
addConfigCheck(hashIterations, size, executorService);
RBitSetAsync bs = createBitSet(executorService);
for (int i = 0; i result = (List<boolean>) executorService.execute().getResponses();
for (Boolean val : result.subList(1, result.size()-1)) {
if (!val) {
// 若存在不为1的位,则认为元素不存在
return false;
}
}
// 都为1,则认为元素存在
return true;
} catch (RedisException e) {
if (e.getMessage() == null || !e.getMessage().contains("Bloom filter config has been changed")) {
throw e;
}
}
}
}</boolean>
好了,本文到此结束,带大家了解了《Redis中Redisson布隆过滤器的学习》,希望本文对你有所帮助!关注golang学习网公众号,给大家分享更多数据库知识!
版本声明
本文转载于:脚本之家 如有侵犯,请联系study_golang@163.com删除
websocket+redis动态订阅和动态取消订阅的实现示例
- 上一篇
- websocket+redis动态订阅和动态取消订阅的实现示例
- 下一篇
- 浅谈Redis的异步机制
查看更多
最新文章
-
- 数据库 · Redis | 8小时前 |
- 监控Redis集群健康状态的工具与指标
- 112浏览 收藏
-
- 数据库 · Redis | 1星期前 |
- Redis数据安全防护全攻略
- 252浏览 收藏
-
- 数据库 · Redis | 2星期前 |
- Redis主从复制故障排查与修复技巧
- 302浏览 收藏
-
- 数据库 · Redis | 2星期前 |
- Redis与HBase存储方案详解
- 325浏览 收藏
-
- 数据库 · Redis | 2星期前 |
- Redis数据安全防护全攻略
- 157浏览 收藏
-
- 数据库 · Redis | 2星期前 |
- 高并发Redis优化技巧分享
- 257浏览 收藏
-
- 数据库 · Redis | 2星期前 |
- Redis数据安全防护全攻略
- 398浏览 收藏
-
- 数据库 · Redis | 3星期前 |
- Redis配置加密方法与安全设置
- 232浏览 收藏
-
- 数据库 · Redis | 3星期前 |
- RedisHyperLogLog高效统计技巧
- 283浏览 收藏
-
- 数据库 · Redis | 3星期前 |
- Redis与MySQL缓存同步方法详解
- 141浏览 收藏
-
- 数据库 · Redis | 3星期前 |
- Redis布隆过滤器防穿透原理解析
- 312浏览 收藏
-
- 数据库 · Redis | 1个月前 |
- Redis容器化部署实战技巧分享
- 195浏览 收藏
查看更多
课程推荐
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 500次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 485次学习
查看更多
AI推荐
-
- ChatExcel酷表
- ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
- 3163次使用
-
- Any绘本
- 探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
- 3375次使用
-
- 可赞AI
- 可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
- 3403次使用
-
- 星月写作
- 星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
- 4506次使用
-
- MagicLight
- MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
- 3784次使用
查看更多
相关文章
-
- Redis BloomFilter布隆过滤器原理与实现
- 2022-12-31 472浏览
-
- go-zero源码阅读之布隆过滤器实现代码
- 2023-02-25 405浏览
-
- Redis中Bloomfilter布隆过滤器的学习
- 2023-02-25 190浏览
-
- 分布式利器redis及redisson的延迟队列实践
- 2023-01-07 100浏览
-
- Redis BloomFilter实例讲解
- 2023-02-16 389浏览

