当前位置:首页 > 文章列表 > 文章 > 前端 > 什么是突触可塑性?它如何影响记忆?

什么是突触可塑性?它如何影响记忆?

来源:dev.to 2024-09-25 14:19:19 0浏览 收藏

目前golang学习网上已经有很多关于文章的文章了,自己在初次阅读这些文章中,也见识到了很多学习思路;那么本文《什么是突触可塑性?它如何影响记忆?》,也希望能帮助到大家,如果阅读完后真的对你学习文章有帮助,欢迎动动手指,评论留言并分享~

什么是突触可塑性?它如何影响记忆?

突触可塑性是神经科学中的一个基本概念,描述了突触(神经元之间的连接)改变其强度和功效的能力。这种改变神经元之间连接的能力对于大脑功能至关重要,尤其是在学习、记忆和认知灵活性等过程中。突触可塑性被广泛认为是学习和记忆的细胞和分子基础,在我们如何获取、存储和回忆信息方面发挥着关键作用。要了解突触可塑性如何影响记忆,有必要探索其背后的机制、它如何与参与记忆的大脑结构相互作用,以及它与记忆生理学的相关性。

了解突触可塑性

突触可塑性的核心是指突触随着时间的推移而增强或减弱的能力,以响应其活动的增加或减少。 “可塑性”一词意味着灵活性,表明大脑的连接不是静态的,而是可以适应和变化的。突触可塑性有两种主要形式:

长时程增强(LTP):突触连接通过重复刺激而变得更强的过程。 LTP 通常与学习和记忆相关,并且在海马体中最为明显,海马体是对记忆形成至关重要的大脑区域。

长期抑郁 (LTD): 削弱突触连接的过程,通常在神经元激活频率较低时发生。 LTD被认为涉及神经回路的微调以及忘记或清除旧的或不相关的信息。

LTP 和 LTD 对于维持新记忆的形成和旧记忆的消除之间的平衡至关重要,确保大脑保持适应性和稳定性。

突触可塑性背后的机制

突触可塑性的机制很复杂,涉及多种细胞和分子过程。一些关键要素包括:

神经递质释放:神经元通过向突触释放称为神经递质的化学物质来相互交流。释放的神经递质数量和突触后神经元的反应会发生变化,从而改变突触的强度。

受体敏感性:在突触后侧,受体(例如谷氨酸的 NMDA 或 AMPA 受体,最常见的兴奋性神经递质)的敏感性或数量的变化可以增加或减少神经元的可能性会响应信号而开火。这种修饰有助于加强(LTP)或削弱(LTD)突触。

钙信号传导:钙离子在突触可塑性中发挥着关键作用。高水平的钙流入突触后神经元通常与 LTP 相关,而中度或低水平的钙流入可引发 LTD。钙在导致突触强度变化的一系列事件中充当第二信使。

结构变化:在某些情况下,突触可塑性涉及突触结构的物理变化。例如,可以形成新的树突棘(接收突触输入的神经元上的微小突起),或者现有的树突棘可以变得更大,从而增强突触连接。或者,突触可以在 LTD 期间收缩或被修剪掉。

这些机制展示了动态突触可塑性如何,使大脑能够实时适应新的信息和体验。

突触可塑性和记忆生理学

记忆通常分为几种类型,包括短期记忆、工作记忆和长期记忆。这些记忆系统都依赖于突触可塑性,尽管方式不同。了解突触可塑性在记忆生理学中的作用有助于了解大脑如何编码、存储和检索信息。

短期记忆和工作记忆

短期记忆和工作记忆涉及信息的临时存储和操作。这种记忆可以让您记住电话号码足够长的时间以便拨打它或在解决问题时记住几条信息。突触可塑性在这里发挥作用,但变化通常是短暂的,不需要长期记忆中看到的持久修改。

参与短期记忆的回路中的突触在其活动模式中表现出快速、可逆的变化。这可能涉及短期突触增强或抑制,其中突触连接的强度在恢复到基线之前短暂增加或减少。这种灵活性允许持续处理信息,而无需永久性的结构变化。

长期记忆

长期记忆涉及更永久的信息存储,并且需要突触强度的持久变化。 LTP 对于长期记忆的形成尤其重要。重复刺激突触会导致其强度持续增强,这种增强可以持续数小时、数天甚至更长时间。这种突触强化构成了创建长期记忆的基础。

关于长期记忆和 LTP 的研究最多的大脑区域之一是海马体,它是编码和巩固记忆的关键区域。海马体在空间记忆(位置和物理环境的记忆)和陈述性记忆(事实和事件的记忆)中发挥着重要作用。实验表明,通过基因操作或化学干预来损害海马体的 LTP 会严重破坏新记忆的形成。

记忆巩固

记忆巩固是短期记忆转化为长期记忆的过程。突触可塑性在这一转变中发挥着关键作用,涉及 LTP 和 LTD。在巩固过程中,大脑会重组并稳定突触连接,以确保记忆持续存在。这个过程经常发生在睡眠期间,特别是在深度睡眠阶段,据信此时会发生突触重组。

有趣的是,LTD 对于记忆巩固也很重要,因为它有助于微调所涉及的神经回路。通过削弱不必要或冗余的连接,LTD 可以实现更高效、更精确的内存存储。如果 LTP 和 LTD 之间没有这种平衡,记忆系统可能会因不相关信息而过载,从而降低记忆回忆的效率。

大脑结构在突触可塑性和记忆中的作用
不同的大脑区域有助于记忆的形成、存储和检索,每个区域都以独特的方式依赖于突触可塑性。了解这些区域如何相互作用可以进一步了解记忆的生理学。

海马

如前所述,海马体是记忆形成的核心,尤其是陈述性记忆(对事实和事件的外显记忆)。海马体的突触可塑性可以将新的经历编码到记忆中,其中 LTP 发挥着至关重要的作用。海马体损伤,例如阿尔茨海默病或脑外伤,通常会导致记忆缺陷,特别是无法形成新的长期记忆。

前额皮质

前额皮质对于工作记忆和执行功能(例如决策、注意力和计划)至关重要。该区域的突触可塑性允许灵活地操纵信息,从而可以记住多条信息并根据需要更新它们。在记忆巩固过程中,该区域还与海马体相互作用,有助于将新记忆与现有知识整合起来。

杏仁核

杏仁核对于情绪记忆至关重要,尤其是与恐惧和其他强烈情绪相关的记忆。杏仁核的突触可塑性允许情绪记忆的形成,并且由于情绪唤醒的参与,这些记忆往往更加生动和持久。情绪和记忆之间的这种相互作用凸显了不同的大脑区域如何以不同的方式对记忆的生理学做出贡献。

小脑

虽然传统上与运动控制相关,但小脑也在程序性记忆(技能和习惯的记忆)中发挥着作用。小脑的突触可塑性可以对运动技能进行微调,使我们能够通过练习和重复来学习骑自行车或演奏乐器等任务。小脑在程序性记忆中的作用证明了突触可塑性在不同类型的记忆系统中的多种应用。

突触可塑性对学习和记忆障碍的影响
鉴于其在记忆形成中的核心作用,突触可塑性的改变通常与认知障碍和记忆障碍有关。更好地了解突触可塑性如何影响记忆生理学可以帮助研究人员开发针对这些疾病的新疗法。

阿尔茨海默病

阿尔茨海默病的特点是记忆和认知功能进行性丧失。阿尔茨海默病的早期症状之一是海马突触可塑性(尤其是 LTP)的破坏。 β-淀粉样蛋白斑块和 tau 蛋白缠结是阿尔茨海默病的标志,它们会干扰突触的正常功能,导致记忆丧失。通过针对突触可塑性,研究人员希望开发出能够恢复或保留阿尔茨海默病患者记忆功能的疗法。

精神分裂症

精神分裂症是一种与认知缺陷相关的精神障碍,包括工作记忆和执行功能障碍。突触可塑性的异常,特别是前额皮质的异常,被认为是导致这些认知症状的原因。增强该区域突触可塑性的治疗可能会改善精神分裂症患者的工作记忆和认知灵活性。

创伤后应激障碍(PTSD)

创伤后应激障碍(PTSD)的特点是持续且侵入性地回忆创伤记忆。杏仁核的突触可塑性被认为在与创伤后应激障碍相关的情绪记忆增强中发挥着重要作用。调节杏仁核突触可塑性的治疗方法可以帮助患有 PTSD 的人调节他们对创伤记忆的情绪反应。

结论

突触可塑性是一个支撑学习和记忆的动态过程,是记忆生理学的细胞和分子基础。通过 LTP 和 LTD 等机制,突触可塑性使大脑能够适应新体验、存储信息和检索记忆。通过了解突触可塑性的工作原理以及它如何影响各种大脑结构,研究人员可以深入了解与记忆相关的疾病,并有可能开发出更有效的认知障碍治疗方法。突触可塑性仍然是神经科学研究的一个关键领域,对教育、心理健康和我们对大脑的理解具有广泛的影响。

终于介绍完啦!小伙伴们,这篇关于《什么是突触可塑性?它如何影响记忆?》的介绍应该让你收获多多了吧!欢迎大家收藏或分享给更多需要学习的朋友吧~golang学习网公众号也会发布文章相关知识,快来关注吧!

版本声明
本文转载于:dev.to 如有侵犯,请联系study_golang@163.com删除
使用 JavaScript 进行函数式编程使用 JavaScript 进行函数式编程
上一篇
使用 JavaScript 进行函数式编程
优化 AWS ECS 的 Java 堆设置
下一篇
优化 AWS ECS 的 Java 堆设置
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • SEO标题魔匠AI:高质量学术写作平台,毕业论文生成与优化专家
    魔匠AI
    SEO摘要魔匠AI专注于高质量AI学术写作,已稳定运行6年。提供无限改稿、选题优化、大纲生成、多语言支持、真实参考文献、数据图表生成、查重降重等全流程服务,确保论文质量与隐私安全。适用于专科、本科、硕士学生及研究者,满足多语言学术需求。
    24次使用
  • PPTFake答辩PPT生成器:一键生成高效专业的答辩PPT
    PPTFake答辩PPT生成器
    PPTFake答辩PPT生成器,专为答辩准备设计,极致高效生成PPT与自述稿。智能解析内容,提供多样模板,数据可视化,贴心配套服务,灵活自主编辑,降低制作门槛,适用于各类答辩场景。
    38次使用
  • SEO标题Lovart AI:全球首个设计领域AI智能体,实现全链路设计自动化
    Lovart
    SEO摘要探索Lovart AI,这款专注于设计领域的AI智能体,通过多模态模型集成和智能任务拆解,实现全链路设计自动化。无论是品牌全案设计、广告与视频制作,还是文创内容创作,Lovart AI都能满足您的需求,提升设计效率,降低成本。
    53次使用
  • 美图AI抠图:行业领先的智能图像处理技术,3秒出图,精准无误
    美图AI抠图
    美图AI抠图,依托CVPR 2024竞赛亚军技术,提供顶尖的图像处理解决方案。适用于证件照、商品、毛发等多场景,支持批量处理,3秒出图,零PS基础也能轻松操作,满足个人与商业需求。
    49次使用
  • SEO标题PetGPT:智能桌面宠物程序,结合AI对话的个性化陪伴工具
    PetGPT
    SEO摘要PetGPT 是一款基于 Python 和 PyQt 开发的智能桌面宠物程序,集成了 OpenAI 的 GPT 模型,提供上下文感知对话和主动聊天功能。用户可高度自定义宠物的外观和行为,支持插件热更新和二次开发。适用于需要陪伴和效率辅助的办公族、学生及 AI 技术爱好者。
    48次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码