动态编程变得简单:带有 JavaScript 示例的初学者指南
大家好,今天本人给大家带来文章《动态编程变得简单:带有 JavaScript 示例的初学者指南》,文中内容主要涉及到,如果你对文章方面的知识点感兴趣,那就请各位朋友继续看下去吧~希望能真正帮到你们,谢谢!
通过 javascript 中的动态编程释放高效解决问题的能力。
介绍
您想提高编程中解决问题的能力吗? 动态规划(dp)是一种强大的技术,可以帮助您高效地解决复杂问题。本初学者指南将通过 javascript 示例向您介绍动态编程,使其易于掌握并应用于实际场景。
您将学到什么:
- 动态规划的基本概念
- 记忆和制表之间的差异
- 如何用 javascript 实现 dp 并结合实例
- 识别 dp 问题并应用正确策略的技巧
什么是动态规划?
动态规划是一种优化技术,用于通过将问题分解为更简单的子问题来解决问题。当问题涉及重叠子问题和最优子结构时,它特别有用。
关键概念
最优子结构:如果问题的最优解包含其子问题的最优解,则问题表现出最优子结构。
重叠子问题:问题可以分解为多次重复使用的子问题。
记忆与制表
动态编程可以通过两种方式实现:记忆(自上而下的方法)和制表(自下而上的方法)。
记忆(自上而下)
记忆化涉及存储昂贵的函数调用的结果,并在相同的输入再次发生时返回缓存的结果。
何时使用:
- 自然递归结构
- 需要避免冗余计算
javascript 示例:具有记忆功能的斐波那契数列
function fibmemo(n, memo = {}) { if (n <= 1) return n; if (memo[n]) return memo[n]; memo[n] = fibmemo(n - 1, memo) + fibmemo(n - 2, memo); return memo[n]; } // example usage: console.log(fibmemo(10)); // output: 55
制表(自下而上)
制表通过从基本情况开始迭代地填充表格(数组)来解决问题。
何时使用:
- 首选迭代方法
- 所有子问题都需要至少解决一次
javascript 示例:带有制表的斐波那契数列
function fibtab(n) { if (n <= 1) return n; const fibtable = [0, 1]; for (let i = 2; i <= n; i++) { fibtable[i] = fibtable[i - 1] + fibtable[i - 2]; } return fibtable[n]; } // example usage: console.log(fibtab(10)); // output: 55
在 javascript 中实现动态编程
让我们探索如何应用动态编程来使用 javascript 解决实际问题。
1. 爬楼梯问题
问题陈述:
你正在爬一个有 n 级台阶的楼梯。您一次可以爬 1 或 2 级台阶。你可以通过多少种不同的方式登上顶峰?
具有记忆功能的动态编程解决方案:
function climbstairs(n, memo = {}) { if (n <= 2) return n; if (memo[n]) return memo[n]; memo[n] = climbstairs(n - 1, memo) + climbstairs(n - 2, memo); return memo[n]; } // example usage: console.log(climbstairs(5)); // output: 8
说明:
- 问题有重叠的子问题(多次计算climbstairs(n - 1) 和climbstairs(n - 2))。
- 记忆化存储这些结果,减少冗余计算。
2. 硬币找零问题
问题陈述:
给定一系列硬币面额和总金额,找到达到该金额所需的最少硬币数量。
带制表的动态规划解决方案:
function coinchange(coins, amount) { const dp = array(amount + 1).fill(infinity); dp[0] = 0; for (let coin of coins) { for (let i = coin; i <= amount; i++) { dp[i] = math.min(dp[i], dp[i - coin] + 1); } } return dp[amount] === infinity ? -1 : dp[amount]; } // example usage: console.log(coinchange([1, 2, 5], 11)); // output: 3
说明:
- 我们建立一个表 dp,其中每个条目 dp[i] 代表数量 i 所需的最少硬币。
- 通过迭代更新dp,我们找到最优解。
认识动态规划问题
动态编程并不总是首选解决方案。以下是识别 dp 问题的方法:
最优子结构:问题能否分解为子问题,其解决方案会导致最优解?
重叠子问题:您是否多次解决同一个子问题?
常见 dp 问题类别:
- 斐波那契数列
- 爬楼梯
- 背包问题
- 最长公共子序列
- 矩阵链乘法
提示和最佳实践
从递归解决方案开始:在优化之前递归地理解问题。
清楚地定义状态:识别代表子问题状态的变量。
选择正确的方法:根据问题的性质在记忆和制表之间做出决定。
优化空间复杂性:尽可能通过仅存储必要的数据来减少空间使用。
使用小输入进行测试:使用小测试用例验证您的解决方案以确保正确性。
其他 javascript 示例
最长公共子序列 (lcs)
问题陈述:
给定两个字符串,找到它们的最长公共子序列的长度。
动态规划解决方案:
function lcs(str1, str2) { const m = str1.length; const n = str2.length; const dp = Array(m + 1).fill(null).map(() => Array(n + 1).fill(0)); for (let i = 1; i <= m; i++) { for (let j = 1; j <= n; j++) { if (str1[i - 1] === str2[j - 1]) { dp[i][j] = dp[i - 1][j - 1] + 1; } else { dp[i][j] = Math.max(dp[i][j - 1], dp[i - 1][j]); } } } return dp[m][n]; } // Example Usage: console.log(lcs("AGGTAB", "GXTXAYB")); // Output: 4
结论
动态规划是一种有效解决复杂问题的宝贵技术。通过理解核心概念并练习 javascript 示例,您可以增强解决问题的工具包。
要点:
- 动态规划通过存储子问题的解决方案进行优化。
- 根据问题在记忆和制表之间进行选择。
- 实践对于有效认识和解决dp问题至关重要。
常见问题解答
q1:什么时候应该使用动态规划?
a1:当问题可以分解为具有最佳子结构的重叠子问题时,使用动态规划。
问题2:记忆和制表有什么区别?
a2:记忆化是一种自上而下的方法,在递归期间存储结果。制表是一种自下而上的方法,迭代地构建表格。
q3:如何识别动态规划问题?
a3:寻找解决方案涉及根据先前计算做出决策以及子问题重复的问题。
进一步阅读
-
书籍:
- cormen、leiserson、rivest 和 stein 的算法简介
- robert sedgewick 和 kevin wayne 的算法
-
在线资源:
- leetcode 上的动态规划
- geeksforgeeks 动态编程教程
通过掌握 javascript 动态编程技术来提高您的编码技能。从今天开始应用这些策略来更有效地解决复杂问题!
到这里,我们也就讲完了《动态编程变得简单:带有 JavaScript 示例的初学者指南》的内容了。个人认为,基础知识的学习和巩固,是为了更好的将其运用到项目中,欢迎关注golang学习网公众号,带你了解更多关于的知识点!

- 上一篇
- Win10系统玩红警时图框很小该怎么解决

- 下一篇
- 撰写列表文章的顶级技巧,可以让您轻松快速地制作出低质量的内容
-
- 文章 · 前端 | 13分钟前 |
- JavaScript创建HTTP服务器的简易教程
- 152浏览 收藏
-
- 文章 · 前端 | 2小时前 |
- JavaScript中的Object.freeze有什么用?
- 308浏览 收藏
-
- 文章 · 前端 | 2小时前 | 性能优化 跨域请求 ajax XMLHttpRequest fetchAPI
- 用JavaScript轻松搞定AJAX请求方法
- 404浏览 收藏
-
- 文章 · 前端 | 4小时前 |
- uni-app数据排序与筛选功能开发攻略
- 472浏览 收藏
-
- 文章 · 前端 | 4小时前 | 性能优化 用户隐私 GeolocationAPI navigator.geolocation.getCurrentPosition 位置准确性
- 在JavaScript中获取用户地理位置的技巧
- 357浏览 收藏
-
- 文章 · 前端 | 6小时前 |
- JavaScript中的闭包详解及应用
- 475浏览 收藏
-
- 文章 · 前端 | 6小时前 |
- JavaScript适配器模式详解及实现教程
- 434浏览 收藏
-
- 文章 · 前端 | 6小时前 | 性能优化 用户隐私 GeolocationAPI navigator.geolocation.getCurrentPosition 位置准确性
- 在JavaScript中获取用户地理位置的技巧
- 367浏览 收藏
-
- 文章 · 前端 | 6小时前 |
- JavaScript大数运算技巧及实现方法
- 495浏览 收藏
-
- 文章 · 前端 | 6小时前 | JavaScript 方法 功能 类 装饰器
- JavaScript中的装饰器是什么?
- 130浏览 收藏
-
- 文章 · 前端 | 6小时前 |
- JavaScript倒计时功能实现攻略
- 234浏览 收藏
-
- 文章 · 前端 | 16小时前 |
- JavaScript中间件的高效使用技巧
- 403浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 可图AI图片生成
- 探索快手旗下可灵AI2.0发布的可图AI2.0图像生成大模型,体验从文本生成图像、图像编辑到风格转绘的全链路创作。了解其技术突破、功能创新及在广告、影视、非遗等领域的应用,领先于Midjourney、DALL-E等竞品。
- 14次使用
-
- MeowTalk喵说
- MeowTalk喵说是一款由Akvelon公司开发的AI应用,通过分析猫咪的叫声,帮助主人理解猫咪的需求和情感。支持iOS和Android平台,提供个性化翻译、情感互动、趣味对话等功能,增进人猫之间的情感联系。
- 14次使用
-
- Traini
- SEO摘要Traini是一家专注于宠物健康教育的创新科技公司,利用先进的人工智能技术,提供宠物行为解读、个性化训练计划、在线课程、医疗辅助和个性化服务推荐等多功能服务。通过PEBI系统,Traini能够精准识别宠物狗的12种情绪状态,推动宠物与人类的智能互动,提升宠物生活质量。
- 17次使用
-
- 可图AI 2.0图片生成
- 可图AI 2.0 是快手旗下的新一代图像生成大模型,支持文本生成图像、图像编辑、风格转绘等全链路创作需求。凭借DiT架构和MVL交互体系,提升了复杂语义理解和多模态交互能力,适用于广告、影视、非遗等领域,助力创作者高效创作。
- 19次使用
-
- 毕业宝AIGC检测
- 毕业宝AIGC检测是“毕业宝”平台的AI生成内容检测工具,专为学术场景设计,帮助用户初步判断文本的原创性和AI参与度。通过与知网、维普数据库联动,提供全面检测结果,适用于学生、研究者、教育工作者及内容创作者。
- 32次使用
-
- 优化用户界面体验的秘密武器:CSS开发项目经验大揭秘
- 2023-11-03 501浏览
-
- 使用微信小程序实现图片轮播特效
- 2023-11-21 501浏览
-
- 解析sessionStorage的存储能力与限制
- 2024-01-11 501浏览
-
- 探索冒泡活动对于团队合作的推动力
- 2024-01-13 501浏览
-
- UI设计中为何选择绝对定位的智慧之道
- 2024-02-03 501浏览