揭秘合并排序:分治排序初学者指南
哈喽!大家好,很高兴又见面了,我是golang学习网的一名作者,今天由我给大家带来一篇《揭秘合并排序:分治排序初学者指南》,本文主要会讲到等等知识点,希望大家一起学习进步,也欢迎大家关注、点赞、收藏、转发! 下面就一起来看看吧!

归并排序由约翰·冯·诺依曼于 1945 年提出,主要是为了提高大型数据集的排序效率。冯·诺依曼的算法旨在使用分而治之的方法提供一致且可预测的排序过程。这种策略允许归并排序有效地处理小型和大型数据集,保证在所有情况下都能实现稳定的排序,时间复杂度为 o(n log n)。
合并排序采用分而治之方法,将数组分割成更小的子数组,对它们进行递归排序,然后将排序后的数组重新合并在一起。这种方法将问题分解为可管理的块,对每个块进行单独排序并有效地将它们组合起来。因此,通过划分排序工作量,该算法即使在大型数据集上也能表现良好。
递归是一个函数调用自身来解决同一问题的较小版本的过程。它不断分解问题,直到问题足够简单可以直接解决,这称为基本情况。
下面是 javascript 中归并排序的实现,展示了如何递归地拆分和合并数组:
function mergesort(arr) {
if (arr.length <= 1) return arr;
const mid = math.floor(arr.length / 2);
const left = mergesort(arr.slice(0, mid));
const right = mergesort(arr.slice(mid));
return merge(left, right);
}
function merge(left, right) {
let result = [];
while (left.length && right.length) {
if (left[0] < right[0]) result.push(left.shift());
else result.push(right.shift());
}
return result.concat(left, right);
}
为了更好地理解归并排序的工作原理,让我们使用数组来演示整个过程:[38, 27, 43, 3, 9, 82, 10]
第 1 步:递归除法(mergesort 函数)
该数组被递归地分割成更小的子数组,直到每个子数组只有一个元素。这是通过 mergesort 函数中的以下几行实现的:
function mergesort(arr) {
if (arr.length <= 1) return arr;
这会停止我们的递归。
以下是递归除法的展开方式:
-
初始调用: mergesort([38, 27, 43, 3, 9, 82, 10])
- 数组在中点分割: [38,27,43] 和 [3,9,82,10]
-
上半场:
-
合并排序([38,27,43])
- 在中点分割:[38] 和 [27, 43]
-
合并排序([27, 43])
- 分为[27]和[43]
- 子数组 [38]、[27] 和 [43] 现在是单独的元素,可以合并。
-
合并排序([38,27,43])
-
下半场:
-
合并排序([3, 9, 82, 10])
- 在中点分割:[3, 9] 和 [82, 10]
-
合并排序([3, 9])
- 分为[3]和[9]
-
合并排序([82, 10])
- 分为[82]和[10]
- 子数组 [3]、[9]、[82] 和 [10] 现在已准备好合并。
-
合并排序([3, 9, 82, 10])
第 2 步:合并已排序的子数组(合并函数)
现在,我们开始使用 merge 函数将子数组按排序顺序合并在一起:
function merge(left, right) {
let result = [];
while (left.length && right.length) {
if (left[0] < right[0]) result.push(left.shift());
else result.push(right.shift());
}
return result.concat(left, right);
}
合并过程的工作原理如下:
第一次合并(来自基本情况):
- 合并 [27] 和 [43] → 结果为 [27, 43]
- 将 [38] 与 [27, 43] 合并 → 结果为 [27, 38, 43]
此时,数组的左半部分已完全合并:[27, 38, 43]。
第二次合并(来自基本情况):
- 合并 [3] 和 [9] → 结果为 [3, 9]
- 合并 [82] 和 [10] → 结果为 [10, 82]
- 将 [3, 9] 与 [10, 82] 合并 → 结果为 [3, 9, 10, 82]
现在,右半部分已完全合并:[3, 9, 10, 82]。
第 3 步:最终合并
最后,使用 merge 函数将两半 [27, 38, 43] 和 [3, 9, 10, 82] 合并:
比较 27(左[0])和 3(右[0])。由于 3 < 27,结果加 3。
比较 27 和 9。将结果加上 9。
比较 27 和 10。结果加 10。
比较 27 和 82。将结果加上 27。
比较 38 和 82。结果加上 38。
比较 43 和 82。将 43 添加到结果中。
添加右侧数组中剩余的元素 82。
完全合并和排序的数组是:
[3, 9, 10, 27, 38, 43, 82].
时间复杂度: 最佳、平均和最坏情况:o(n log n)
让我们仔细看看:
除法(o(log n)):每次将数组分成两半,问题的大小就会减小。由于数组在每一步都被分成两半,因此执行此操作的次数与 log n 成正比。例如,如果有 8 个元素,则可以将它们分成两半 3 次(因为 log2(8) = 3)。
合并(o(n)):划分数组后,算法将较小的数组按顺序合并在一起。合并两个大小为 n 的排序数组需要 o(n) 时间,因为您必须对每个元素进行比较和组合一次。
总体复杂度(o(n log n)):由于除法需要 o(log n) 步骤,并且在每一步合并 n 个元素,因此总时间复杂度是这两者的乘积:o(n log n)。
空间复杂度: o(n)
合并排序需要与数组大小成正比的额外空间,因为它在合并阶段需要临时数组来存储元素。
与其他排序算法的比较:
快速排序:虽然快速排序的平均时间复杂度为 o(n log n),但最坏的情况可能是 o(n^2)。合并排序避免了这种最坏的情况,但当空间受到关注时,快速排序对于内存中排序通常更快。
冒泡排序:比合并排序效率低得多,平均和最坏情况的时间复杂度为 o(n^2)。
真实世界用法
合并排序广泛用于外部排序,其中需要从磁盘对大型数据集进行排序,因为它可以有效地处理无法放入内存的数据。它也通常在并行计算环境中实现,其中子数组可以利用多核处理进行独立排序。
此外,python (timsort)、java 和 c++ (std::stable_sort) 等库和语言都依赖归并排序的变体来确保排序操作的稳定性,使其特别适合对对象和复杂数据结构进行排序。
结论
由于其稳定性、一致的性能以及对大型数据集排序的适应性,合并排序仍然是理论计算机科学和实际应用中的基本算法。虽然 quicksort 等其他算法在某些情况下可能执行得更快,但合并排序保证的 o(n log n) 时间复杂度和多功能性使其对于内存受限的环境以及维护具有相同键的元素的顺序非常有价值。它在现代编程库中的作用确保了它在现实世界的应用程序中保持相关性。
来源:
- knuth,donald e. 计算机编程艺术,卷。 3:排序和搜索。 addison-wesley professional,1997 年,第 158-160 页。
- cormen,thomas h. 等人。算法简介。麻省理工学院出版社,2009 年,第 2 章(归并排序)、第 5 章(算法复杂性)、第 7 章(快速排序)。
- silberschatz、亚伯拉罕等人。数据库系统概念。 mcgraw-hill,2010 年,第 13 章(外部排序)。
- “蒂姆索特。” python 文档、python 软件基础。 python 的 timsort
- “java 数组.排序”。 oracle 文档。 java 的 arrays.sort()
文中关于的知识介绍,希望对你的学习有所帮助!若是受益匪浅,那就动动鼠标收藏这篇《揭秘合并排序:分治排序初学者指南》文章吧,也可关注golang学习网公众号了解相关技术文章。
Win7图片不显示缩略图怎么办
- 上一篇
- Win7图片不显示缩略图怎么办
- 下一篇
- Tom and Jerry Light code
-
- 文章 · 前端 | 2小时前 |
- CSSz-index层级控制全攻略
- 394浏览 收藏
-
- 文章 · 前端 | 3小时前 |
- PostCSS插件配置全攻略
- 258浏览 收藏
-
- 文章 · 前端 | 3小时前 | 背景 CSS渐变 linear-gradient radial-gradient 颜色停点
- CSS渐变色详解:linear-gradient与radial-gradient用法
- 402浏览 收藏
-
- 文章 · 前端 | 3小时前 | 主题切换 color属性 currentColor 颜色统一管理 减少重复代码
- CSScurrentColor统一颜色管理技巧
- 160浏览 收藏
-
- 文章 · 前端 | 3小时前 |
- CSS导入外部样式表方法详解
- 189浏览 收藏
-
- 文章 · 前端 | 3小时前 |
- WebCryptoAPI:JavaScript密码学实战教程
- 140浏览 收藏
-
- 文章 · 前端 | 3小时前 |
- JS对象属性变化监听全解析
- 310浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 500次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 485次学习
-
- ChatExcel酷表
- ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
- 3191次使用
-
- Any绘本
- 探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
- 3403次使用
-
- 可赞AI
- 可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
- 3434次使用
-
- 星月写作
- 星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
- 4541次使用
-
- MagicLight
- MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
- 3812次使用
-
- JavaScript函数定义及示例详解
- 2025-05-11 502浏览
-
- 优化用户界面体验的秘密武器:CSS开发项目经验大揭秘
- 2023-11-03 501浏览
-
- 使用微信小程序实现图片轮播特效
- 2023-11-21 501浏览
-
- 解析sessionStorage的存储能力与限制
- 2024-01-11 501浏览
-
- 探索冒泡活动对于团队合作的推动力
- 2024-01-13 501浏览

