MySQL之范式的使用详解
怎么入门数据库编程?需要学习哪些知识点?这是新手们刚接触编程时常见的问题;下面golang学习网就来给大家整理分享一些知识点,希望能够给初学者一些帮助。本篇文章就来介绍《MySQL之范式的使用详解》,涉及到MySQL范式,有需要的可以收藏一下
一、范式
范式的英文名称是Normal Form,它是英国人E.F.Codd(关系数据库的老祖宗)在上个世纪70年代提出关系数据库模型后总结出来的。范式是关系数据库理论的基础,也是我们在设计数据库结构过程中所要遵循的规则和指导方法。目前有迹可寻的共有8种范式,依次是:1NF,2NF,3NF,BCNF,4NF,5NF,DKNF,6NF。通常所用到的只是前三个范式,即:第一范式(1NF),第二范式(2NF),第三范式(3NF)。
第一范式(1NF)
第一范式其实是关系型数据库的基础,即任何关系型数据库都是符合第一范式的。简单的将第一范式就是每一行的各个数据都是不可分割的,同一列中不能有多个值,如果出现重复的属性就需要定义一个新的尸实体。
下面数据库便不符合第一范式:
+------------+-------------------+ | workername | company | +------------+-------------------+ | John | ByteDance,Tencent | | Mike | Tencent | +------------+-------------------+
上面描述的数据所表达的意思是,Mike在Tencent工作,而John同时在ByteDance和Tencent工作(假设这是可能的)。但是这种表达方式并不符合第一范式,即列的数据必须是不可分的,要满足第一范式,必须是下面的这种形式:
+------------+-----------+ | workername | company | +------------+-----------+ | Mike | Tencent | | John | ByteDance | | John | Tencent | +------------+-----------+
第二范式(2NF)
首先,一个数据库要满足第二范式必须要先满足第一范式。
我们先看一个表格:
+----------+-------------+-------+ | employee | department | head | +----------+-------------+-------+ | Jones | Accountint | Jones | | Smith | Engineering | Smith | | Brown | Accounting | Jones | | Green | Engineering | Smith | +----------+-------------+-------+
这个表描述了被雇佣者,工作部门和领导的关系。这个表所表示的关系在现实生活中是完全可能存在的,现在让我们考虑一个问题,如果Brown接任Accounting部门的领导,我们需要怎样对表进行修改?这个问题将会变得非常麻烦,因为我们会发现数据都耦合在一起了,你很难找到一个很好的能唯一确定每一行的判断条件来执行你的UPDATE语句。而我们把能够唯一表示数据库中表的一行的数据成为这个表的主键。 因此,没有主键的表是不符合第二范式的,也就是说符合第二范式的表需要规定主键。
因此我们为了使上面的表符合第二范式,需要将它拆分为两个表:
+----------+-------------+ | employee | department | +----------+-------------+ | Brown | Accounting | | Green | Engineering | | Jones | Accounting | | Smith | Engineering | +----------+-------------+ +-------------+-------+ | department | head | +-------------+-------+ | Accounting | Jones | | Engineering | Smith | +-------------+-------+
在这两个表中,第一个表的主键为employee,第二个表的主键为department。在这种情况下,完成上面的问题就显得非常简单了。
第三范式(3NF)
一个关系型数据库要满足第三范式必须要先满足第二范式。
将第三范式前,我们同样先看两个表:
+-----------+-------------+---------+-------+ | studentid | studentname | subject | score | +-----------+-------------+---------+-------+ | 1 | Mike | Math | 96 | | 2 | John | Chinese | 85 | | 3 | Kate | History | 100 | +-----------+-------------+---------+-------+ +-----------+-----------+-------+ | subjectid | studentid | score | +-----------+-----------+-------+ | 101 | 1 | 96 | | 111 | 3 | 100 | | 201 | 2 | 85 | +-----------+-----------+-------+
上面的两个表格的主键分别为studentid和subjectid,很显然两个表都符合第二范式。
但是我们会发现这两个表有重复冗余的数据score。因此第三范式就是要消除冗余的数据,具体到上面的情况,就是两个表只有一个能够存在score这一列数据。那么怎么将这两个表联系起来呢,这里就出现了外键。如果两个表中有冗余重复的列,而且这个表中的一个非主键列在另一个表中是主键,那么我们为了消除冗余列可以把这个非主键列作为联系两个表的桥梁,也就是外键。 通过观察可以发现,studentid在第一个表中是主键,在第二个表中是非主键,所以他就是第二个表的外键。因此上述情况我们有了以下符合第三范式的写法:
+-----------+-------------+---------+ | studentid | studentname | subject | +-----------+-------------+---------+ | 1 | Mike | Math | | 2 | John | Chinese | | 3 | Kate | History | +-----------+-------------+---------+ +-----------+-----------+-------+ | subjectid | studentid | score | +-----------+-----------+-------+ | 101 | 1 | 96 | | 111 | 3 | 100 | | 201 | 2 | 85 | +-----------+-----------+-------+
可以发现在设定了外键之后,第一个表即使删除了score列,也可以通过studentid在第二个表中查找到相应的score的值,这样即消除了数据的冗余,又不会影响查找,满足第三范式。
二、范式的优点和缺点
范式的优点
- 范式化的更新操作通常要比反范式化要快。
- 当数据较好地范式化时,就只有很少或者没有重复的数据,所以只需要修改更少的数据。
- 范式化的表通常都比较小,可以更好的放在内存中,所以执行操作会更快。
- 很少有多余的数据意味着检索列表数据时更少需要DISTINCT或者GROUP BY语句。
范式的缺点
- 范式化的缺点就是通常需要关联。稍微复杂一些的查询语句在符合范式的数据库上都可能需要至少一次关联,也许更多,这不但代价昂贵,也可能使一些索引策略无效。
今天关于《MySQL之范式的使用详解》的内容介绍就到此结束,如果有什么疑问或者建议,可以在golang学习网公众号下多多回复交流;文中若有不正之处,也希望回复留言以告知!

- 上一篇
- MySql分组后随机获取每组一条数据的操作

- 下一篇
- SQL 列不同的表查询结果合并操作
-
- 舒心的小兔子
- 这篇技术文章真是及时雨啊,好细啊,感谢大佬分享,码住,关注老哥了!希望老哥能多写数据库相关的文章。
- 2023-01-28 08:20:21
-
- 数据库 · MySQL | 18小时前 | 索引 数据类型 字符集 存储引擎 CREATETABLE
- MySQL新建表操作指南与建表技巧
- 462浏览 收藏
-
- 数据库 · MySQL | 1个月前 | 条件判断
- CASEWHEN条件判断的嵌套使用详解与实战场景分析
- 469浏览 收藏
-
- 数据库 · MySQL | 1个月前 | java php
- CSV文件批量导入MySQL的性能优化秘籍大揭秘
- 289浏览 收藏
-
- 数据库 · MySQL | 1个月前 |
- GaleraCluster多主集群配置与冲突解决攻略
- 239浏览 收藏
-
- 数据库 · MySQL | 1个月前 | 窗口函数实战
- MySQL窗口函数实战案例深度剖析
- 315浏览 收藏
-
- 数据库 · MySQL | 1个月前 | 自定义函数
- MySQL插件开发入门:自定义函数(UDF)编写指南
- 184浏览 收藏
-
- 数据库 · MySQL | 1个月前 |
- Windows系统MySQL8.0免安装版配置攻略
- 227浏览 收藏
-
- 数据库 · MySQL | 1个月前 | MySQL错误 数据库诊断
- 深度解析错误代码1045/1217/1205的根本原因及解决方案
- 202浏览 收藏
-
- 数据库 · MySQL | 1个月前 | sql注入 编码规范
- 防范SQL注入必备:编码规范与工具推荐指南
- 140浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 笔灵AI生成答辩PPT
- 探索笔灵AI生成答辩PPT的强大功能,快速制作高质量答辩PPT。精准内容提取、多样模板匹配、数据可视化、配套自述稿生成,让您的学术和职场展示更加专业与高效。
- 15次使用
-
- 知网AIGC检测服务系统
- 知网AIGC检测服务系统,专注于检测学术文本中的疑似AI生成内容。依托知网海量高质量文献资源,结合先进的“知识增强AIGC检测技术”,系统能够从语言模式和语义逻辑两方面精准识别AI生成内容,适用于学术研究、教育和企业领域,确保文本的真实性和原创性。
- 24次使用
-
- AIGC检测-Aibiye
- AIbiye官网推出的AIGC检测服务,专注于检测ChatGPT、Gemini、Claude等AIGC工具生成的文本,帮助用户确保论文的原创性和学术规范。支持txt和doc(x)格式,检测范围为论文正文,提供高准确性和便捷的用户体验。
- 30次使用
-
- 易笔AI论文
- 易笔AI论文平台提供自动写作、格式校对、查重检测等功能,支持多种学术领域的论文生成。价格优惠,界面友好,操作简便,适用于学术研究者、学生及论文辅导机构。
- 42次使用
-
- 笔启AI论文写作平台
- 笔启AI论文写作平台提供多类型论文生成服务,支持多语言写作,满足学术研究者、学生和职场人士的需求。平台采用AI 4.0版本,确保论文质量和原创性,并提供查重保障和隐私保护。
- 35次使用
-
- MySQL主从切换的超详细步骤
- 2023-01-01 501浏览
-
- Mysql-普通索引的 change buffer
- 2023-01-25 501浏览
-
- MySQL高级进阶sql语句总结大全
- 2022-12-31 501浏览
-
- Mysql报错:message from server: * is blocked because of many
- 2023-02-24 501浏览
-
- 腾讯云大佬亲码“redis深度笔记”,不讲一句废话,全是精华
- 2023-02-22 501浏览