ResNet、EfficientNet、VGG、NN
你在学习文章相关的知识吗?本文《ResNet、EfficientNet、VGG、NN》,主要介绍的内容就涉及到,如果你想提升自己的开发能力,就不要错过这篇文章,大家要知道编程理论基础和实战操作都是不可或缺的哦!
作为一名学生,我亲眼目睹了我们大学低效的失物招领系统所带来的挫败感。目前的流程依赖于每个找到的物品的单独电子邮件,通常会导致丢失物品与其所有者之间的延误和错过联系。
出于为自己和同学改善这种体验的愿望,我开始了一个项目,探索深度学习在彻底改变我们的失物招领系统方面的潜力。 在这篇博文中,我将分享我评估预训练模型(resnet、efficientnet、vgg 和 nasnet)的旅程,以自动识别和分类丢失的物品。
通过比较分析,我的目标是找出最适合集成到我们系统中的模型,最终为校园里的每个人创造更快、更准确、用户友好的失物招领体验。
残差网络
inception-resnet v2 是 keras 中提供的强大的卷积神经网络架构,将 inception 架构的优势与 resnet 的残差连接相结合。这种混合模型旨在在保持计算效率的同时实现图像分类任务的高精度。
训练数据集:imagenet
图像格式:299 x 299
预处理功能
def readyforresnet(filename): pic = load_img(filename, target_size=(299, 299)) pic_array = img_to_array(pic) expanded = np.expand_dims(pic_array, axis=0) return preprocess_input_resnet(expanded)
预测
data1 = readyforresnet(test_file) prediction = inception_model_resnet.predict(data1) res1 = decode_predictions_resnet(prediction, top=2)
vgg(视觉几何组)
vgg(视觉几何组)是一系列深度卷积神经网络架构,以其在图像分类任务中的简单性和有效性而闻名。这些模型,特别是 vgg16 和 vgg19,由于在 2014 年 imagenet 大规模视觉识别挑战赛 (ilsvrc) 中的出色表现而受到欢迎。
训练数据集:imagenet
图像格式:224 x 224
预处理功能
def readyforvgg(filename): pic = load_img(filename, target_size=(224, 224)) pic_array = img_to_array(pic) expanded = np.expand_dims(pic_array, axis=0) return preprocess_input_vgg19(expanded)
预测
data2 = readyforvgg(test_file) prediction = inception_model_vgg19.predict(data2) res2 = decode_predictions_vgg19(prediction, top=2)
高效网络
efficientnet 是一系列卷积神经网络架构,可在图像分类任务上实现最先进的准确性,同时比以前的模型更小、速度更快。这种效率是通过平衡网络深度、宽度和分辨率的新型复合缩放方法来实现的。
训练数据集:imagenet
图像格式:480 x 480
预处理功能
def readyforef(filename): pic = load_img(filename, target_size=(480, 480)) pic_array = img_to_array(pic) expanded = np.expand_dims(pic_array, axis=0) return preprocess_input_ef(expanded)
预测
data3 = readyforef(test_file) prediction = inception_model_ef.predict(data3) res3 = decode_predictions_ef(prediction, top=2)
纳斯网络
nasnet(神经架构搜索网络)代表了深度学习中的一种突破性方法,其中神经网络本身的架构是通过自动搜索过程发现的。此搜索过程旨在找到层和连接的最佳组合,以在给定任务上实现高性能。
训练数据集:imagenet
图像格式:224 x 224
预处理功能
def readyfornn(filename): pic = load_img(filename, target_size=(224, 224)) pic_array = img_to_array(pic) expanded = np.expand_dims(pic_array, axis=0) return preprocess_input_nn(expanded)
预测
data4 = readyForNN(test_file) prediction = inception_model_NN.predict(data4) res4 = decode_predictions_NN(prediction, top=2)
摊牌
准确性
该表总结了上述模型声称的准确性分数。 efficientnet b7 以最高的准确率领先,紧随其后的是 nasnet-large 和 inception-resnet v2。 vgg 模型的精度较低。对于我的应用程序,我想选择一个在处理时间和准确性之间取得平衡的模型。
时间
正如我们所见,efficientnetb0 为我们提供了最快的结果,但是考虑到准确性,inceptionresnetv2 是一个更好的包
概括
对于我的智能失物招领系统,我决定使用 inceptionresnetv2。虽然 efficientnet b7 以其一流的准确性看起来很诱人,但我担心它的计算需求。在大学环境中,资源可能有限,而实时性能往往是可取的,我认为在准确性和效率之间取得平衡很重要。 inceptionresnetv2 似乎是完美的选择 - 它提供了强大的性能,而又不会过度计算密集。
此外,它在 imagenet 上进行预训练的事实让我相信它可以处理人们可能丢失的各种物体。我们不要忘记在 keras 中使用是多么容易!这绝对让我的决定更容易。
总的来说,我相信 inceptionresnetv2 为我的项目提供了准确性、效率和实用性的正确组合。我很高兴看到它如何帮助丢失的物品与失主重新团聚!
今天带大家了解了的相关知识,希望对你有所帮助;关于文章的技术知识我们会一点点深入介绍,欢迎大家关注golang学习网公众号,一起学习编程~

- 上一篇
- 如何用 PHP 访问人工智能模型?

- 下一篇
- 函数式编程在 Java 中的未来
-
- 文章 · python教程 | 18分钟前 |
- Python三大强势领域太秀了,不服都不行!
- 381浏览 收藏
-
- 文章 · python教程 | 27分钟前 |
- PyCharm安装&配置全指南,手把手教你快速上手!
- 360浏览 收藏
-
- 文章 · python教程 | 28分钟前 | Python zip函数
- Pythonzip函数怎么用?这些技巧和案例帮你快速掌握
- 382浏览 收藏
-
- 文章 · python教程 | 36分钟前 |
- VSCode搭建Python环境:插件+调试超详细教程
- 366浏览 收藏
-
- 文章 · python教程 | 37分钟前 |
- Python中int是什么?扒一扒Python整数类型的那些事儿
- 197浏览 收藏
-
- 文章 · python教程 | 45分钟前 |
- Python取模运算太简单了?手把手教你从入门到精通
- 336浏览 收藏
-
- 文章 · python教程 | 45分钟前 | 第三方库 依赖冲突
- Python装库实操+依赖冲突解决方案(附详细步骤)
- 340浏览 收藏
-
- 文章 · python教程 | 59分钟前 |
- Python中%s的作用详解,快速掌握字符串格式化技巧
- 265浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python小白必备!超全基础代码合集一次性放出~
- 219浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Pythonglobal关键字怎么用?全局变量声明超详解
- 423浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 茅茅虫AIGC检测
- 茅茅虫AIGC检测,湖南茅茅虫科技有限公司倾力打造,运用NLP技术精准识别AI生成文本,提供论文、专著等学术文本的AIGC检测服务。支持多种格式,生成可视化报告,保障您的学术诚信和内容质量。
- 91次使用
-
- 赛林匹克平台(Challympics)
- 探索赛林匹克平台Challympics,一个聚焦人工智能、算力算法、量子计算等前沿技术的赛事聚合平台。连接产学研用,助力科技创新与产业升级。
- 99次使用
-
- 笔格AIPPT
- SEO 笔格AIPPT是135编辑器推出的AI智能PPT制作平台,依托DeepSeek大模型,实现智能大纲生成、一键PPT生成、AI文字优化、图像生成等功能。免费试用,提升PPT制作效率,适用于商务演示、教育培训等多种场景。
- 101次使用
-
- 稿定PPT
- 告别PPT制作难题!稿定PPT提供海量模板、AI智能生成、在线协作,助您轻松制作专业演示文稿。职场办公、教育学习、企业服务全覆盖,降本增效,释放创意!
- 97次使用
-
- Suno苏诺中文版
- 探索Suno苏诺中文版,一款颠覆传统音乐创作的AI平台。无需专业技能,轻松创作个性化音乐。智能词曲生成、风格迁移、海量音效,释放您的音乐灵感!
- 95次使用
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览