ResNet、EfficientNet、VGG、NN
你在学习文章相关的知识吗?本文《ResNet、EfficientNet、VGG、NN》,主要介绍的内容就涉及到,如果你想提升自己的开发能力,就不要错过这篇文章,大家要知道编程理论基础和实战操作都是不可或缺的哦!
作为一名学生,我亲眼目睹了我们大学低效的失物招领系统所带来的挫败感。目前的流程依赖于每个找到的物品的单独电子邮件,通常会导致丢失物品与其所有者之间的延误和错过联系。
出于为自己和同学改善这种体验的愿望,我开始了一个项目,探索深度学习在彻底改变我们的失物招领系统方面的潜力。 在这篇博文中,我将分享我评估预训练模型(resnet、efficientnet、vgg 和 nasnet)的旅程,以自动识别和分类丢失的物品。
通过比较分析,我的目标是找出最适合集成到我们系统中的模型,最终为校园里的每个人创造更快、更准确、用户友好的失物招领体验。
残差网络
inception-resnet v2 是 keras 中提供的强大的卷积神经网络架构,将 inception 架构的优势与 resnet 的残差连接相结合。这种混合模型旨在在保持计算效率的同时实现图像分类任务的高精度。
训练数据集:imagenet
图像格式:299 x 299
预处理功能
def readyforresnet(filename):
pic = load_img(filename, target_size=(299, 299))
pic_array = img_to_array(pic)
expanded = np.expand_dims(pic_array, axis=0)
return preprocess_input_resnet(expanded)
预测
data1 = readyforresnet(test_file) prediction = inception_model_resnet.predict(data1) res1 = decode_predictions_resnet(prediction, top=2)
vgg(视觉几何组)
vgg(视觉几何组)是一系列深度卷积神经网络架构,以其在图像分类任务中的简单性和有效性而闻名。这些模型,特别是 vgg16 和 vgg19,由于在 2014 年 imagenet 大规模视觉识别挑战赛 (ilsvrc) 中的出色表现而受到欢迎。
训练数据集:imagenet
图像格式:224 x 224
预处理功能
def readyforvgg(filename):
pic = load_img(filename, target_size=(224, 224))
pic_array = img_to_array(pic)
expanded = np.expand_dims(pic_array, axis=0)
return preprocess_input_vgg19(expanded)
预测
data2 = readyforvgg(test_file) prediction = inception_model_vgg19.predict(data2) res2 = decode_predictions_vgg19(prediction, top=2)
高效网络
efficientnet 是一系列卷积神经网络架构,可在图像分类任务上实现最先进的准确性,同时比以前的模型更小、速度更快。这种效率是通过平衡网络深度、宽度和分辨率的新型复合缩放方法来实现的。
训练数据集:imagenet
图像格式:480 x 480
预处理功能
def readyforef(filename):
pic = load_img(filename, target_size=(480, 480))
pic_array = img_to_array(pic)
expanded = np.expand_dims(pic_array, axis=0)
return preprocess_input_ef(expanded)
预测
data3 = readyforef(test_file) prediction = inception_model_ef.predict(data3) res3 = decode_predictions_ef(prediction, top=2)
纳斯网络
nasnet(神经架构搜索网络)代表了深度学习中的一种突破性方法,其中神经网络本身的架构是通过自动搜索过程发现的。此搜索过程旨在找到层和连接的最佳组合,以在给定任务上实现高性能。
训练数据集:imagenet
图像格式:224 x 224
预处理功能
def readyfornn(filename):
pic = load_img(filename, target_size=(224, 224))
pic_array = img_to_array(pic)
expanded = np.expand_dims(pic_array, axis=0)
return preprocess_input_nn(expanded)
预测
data4 = readyForNN(test_file) prediction = inception_model_NN.predict(data4) res4 = decode_predictions_NN(prediction, top=2)
摊牌
准确性

该表总结了上述模型声称的准确性分数。 efficientnet b7 以最高的准确率领先,紧随其后的是 nasnet-large 和 inception-resnet v2。 vgg 模型的精度较低。对于我的应用程序,我想选择一个在处理时间和准确性之间取得平衡的模型。
时间

正如我们所见,efficientnetb0 为我们提供了最快的结果,但是考虑到准确性,inceptionresnetv2 是一个更好的包
概括
对于我的智能失物招领系统,我决定使用 inceptionresnetv2。虽然 efficientnet b7 以其一流的准确性看起来很诱人,但我担心它的计算需求。在大学环境中,资源可能有限,而实时性能往往是可取的,我认为在准确性和效率之间取得平衡很重要。 inceptionresnetv2 似乎是完美的选择 - 它提供了强大的性能,而又不会过度计算密集。
此外,它在 imagenet 上进行预训练的事实让我相信它可以处理人们可能丢失的各种物体。我们不要忘记在 keras 中使用是多么容易!这绝对让我的决定更容易。
总的来说,我相信 inceptionresnetv2 为我的项目提供了准确性、效率和实用性的正确组合。我很高兴看到它如何帮助丢失的物品与失主重新团聚!
今天带大家了解了的相关知识,希望对你有所帮助;关于文章的技术知识我们会一点点深入介绍,欢迎大家关注golang学习网公众号,一起学习编程~
如何用 PHP 访问人工智能模型?
- 上一篇
- 如何用 PHP 访问人工智能模型?
- 下一篇
- 函数式编程在 Java 中的未来
-
- 文章 · python教程 | 15分钟前 |
- TF变量零初始化与优化器关系解析
- 427浏览 收藏
-
- 文章 · python教程 | 19分钟前 |
- Python字符串与列表反转技巧
- 126浏览 收藏
-
- 文章 · python教程 | 30分钟前 | Python 错误处理 AssertionError 生产环境 assert语句
- Python断言失败解决方法详解
- 133浏览 收藏
-
- 文章 · python教程 | 55分钟前 |
- 动态设置NetCDF图表标题的实用方法
- 247浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- PyCharm切换英文界面教程
- 405浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Behave教程:单个BDD示例运行方法
- 411浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- PythonGTK3动态CSS技巧分享
- 497浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- SciPyCSR矩阵行非零元素高效提取方法
- 411浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- Python文件读取技巧:strip与split使用解析
- 349浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- Python处理CSV列数不一致与编码问题详解
- 490浏览 收藏
-
- 文章 · python教程 | 2小时前 | docker Python 虚拟环境 跨平台 pyinstaller
- Python跨平台开发全解析
- 424浏览 收藏
-
- 文章 · python教程 | 2小时前 | Python 环境搭建
- Python新手环境搭建全攻略
- 399浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 500次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 485次学习
-
- ChatExcel酷表
- ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
- 3200次使用
-
- Any绘本
- 探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
- 3413次使用
-
- 可赞AI
- 可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
- 3443次使用
-
- 星月写作
- 星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
- 4551次使用
-
- MagicLight
- MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
- 3821次使用
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览

