Tensorflow 音乐预测
来源:dev.to
2024-08-27 15:54:52
0浏览
收藏
从现在开始,我们要努力学习啦!今天我给大家带来《Tensorflow 音乐预测》,感兴趣的朋友请继续看下去吧!下文中的内容我们主要会涉及到等等知识点,如果在阅读本文过程中有遇到不清楚的地方,欢迎留言呀!我们一起讨论,一起学习!
在本文中,我展示了如何使用张量流来预测音乐风格。
在我的示例中,我比较了电子音乐和古典音乐。
你可以在我的github上找到代码:
https://github.com/victordalet/sound_to_partition
i - 数据集
第一步,您需要创建一个数据集文件夹,并在里面添加一个音乐风格文件夹,例如我添加一个 techno 文件夹和 classic 文件夹,其中放置我的 wav 歌曲。
ii - 火车
我创建一个训练文件,参数 max_epochs 需要完成。
修改构造函数中与数据集文件夹中您的目录对应的类。
在加载和处理方法中,我从不同的目录检索wav文件并获取频谱图。
出于训练目的,我使用 keras 卷积和模型。
import os import sys from typing import list import librosa import numpy as np from tensorflow.keras.layers import input, conv2d, maxpooling2d, flatten, dense from tensorflow.keras.models import model from tensorflow.keras.optimizers import adam from sklearn.model_selection import train_test_split from tensorflow.keras.utils import to_categorical from tensorflow.image import resize class train: def __init__(self): self.x_train = none self.x_test = none self.y_train = none self.y_test = none self.data_dir: str = 'dataset' self.classes: list[str] = ['techno','classic'] self.max_epochs: int = int(sys.argv[1]) @staticmethod def load_and_preprocess_data(data_dir, classes, target_shape=(128, 128)): data = [] labels = [] for i, class_name in enumerate(classes): class_dir = os.path.join(data_dir, class_name) for filename in os.listdir(class_dir): if filename.endswith('.wav'): file_path = os.path.join(class_dir, filename) audio_data, sample_rate = librosa.load(file_path, sr=none) mel_spectrogram = librosa.feature.melspectrogram(y=audio_data, sr=sample_rate) mel_spectrogram = resize(np.expand_dims(mel_spectrogram, axis=-1), target_shape) data.append(mel_spectrogram) labels.append(i) return np.array(data), np.array(labels) def create_model(self): data, labels = self.load_and_preprocess_data(self.data_dir, self.classes) labels = to_categorical(labels, num_classes=len(self.classes)) # convert labels to one-hot encoding self.x_train, self.x_test, self.y_train, self.y_test = train_test_split(data, labels, test_size=0.2, random_state=42) input_shape = self.x_train[0].shape input_layer = input(shape=input_shape) x = conv2d(32, (3, 3), activation='relu')(input_layer) x = maxpooling2d((2, 2))(x) x = conv2d(64, (3, 3), activation='relu')(x) x = maxpooling2d((2, 2))(x) x = flatten()(x) x = dense(64, activation='relu')(x) output_layer = dense(len(self.classes), activation='softmax')(x) self.model = model(input_layer, output_layer) self.model.compile(optimizer=adam(learning_rate=0.001), loss='categorical_crossentropy', metrics=['accuracy']) def train_model(self): self.model.fit(self.x_train, self.y_train, epochs=self.max_epochs, batch_size=32, validation_data=(self.x_test, self.y_test)) test_accuracy = self.model.evaluate(self.x_test, self.y_test, verbose=0) print(test_accuracy[1]) def save_model(self): self.model.save('weight.h5') if __name__ == '__main__': train = train() train.create_model() train.train_model() train.save_model()
iii-测试
为了测试和使用模型,我创建了这个类来检索权重并预测音乐的风格。
不要忘记将正确的类添加到构造函数中。
from typing import List import librosa import numpy as np from tensorflow.keras.models import load_model from tensorflow.image import resize import tensorflow as tf class Test: def __init__(self, audio_file_path: str): self.model = load_model('weight.h5') self.target_shape = (128, 128) self.classes: List[str] = ['techno','classic'] self.audio_file_path: str = audio_file_path def test_audio(self, file_path, model): audio_data, sample_rate = librosa.load(file_path, sr=None) mel_spectrogram = librosa.feature.melspectrogram(y=audio_data, sr=sample_rate) mel_spectrogram = resize(np.expand_dims(mel_spectrogram, axis=-1), self.target_shape) mel_spectrogram = tf.reshape(mel_spectrogram, (1,) + self.target_shape + (1,)) predictions = model.predict(mel_spectrogram) class_probabilities = predictions[0] predicted_class_index = np.argmax(class_probabilities) return class_probabilities, predicted_class_index def test(self): class_probabilities, predicted_class_index = self.test_audio(self.audio_file_path, self.model) for i, class_label in enumerate(self.classes): probability = class_probabilities[i] print(f'Class: {class_label}, Probability: {probability:.4f}') predicted_class = self.classes[predicted_class_index] accuracy = class_probabilities[predicted_class_index] print(f'The audio is classified as: {predicted_class}') print(f'Accuracy: {accuracy:.4f}')
好了,本文到此结束,带大家了解了《Tensorflow 音乐预测》,希望本文对你有所帮助!关注golang学习网公众号,给大家分享更多文章知识!
版本声明
本文转载于:dev.to 如有侵犯,请联系study_golang@163.com删除

- 上一篇
- PHP 函数中变量类型的规则是什么?

- 下一篇
- PHP 如何与外部脚本语言协作?
查看更多
最新文章
-
- 文章 · python教程 | 3小时前 | Python XML解析 xpath lxml xml.etree.ElementTree
- Python解析XML文件的正确姿势
- 415浏览 收藏
-
- 文章 · python教程 | 5小时前 |
- Python处理表单数据的技巧与攻略
- 235浏览 收藏
-
- 文章 · python教程 | 6小时前 |
- Ubuntu22.04源码编译Python3.12:依赖详解
- 377浏览 收藏
-
- 文章 · python教程 | 6小时前 |
- Python热力图绘制教程与实战示例
- 136浏览 收藏
-
- 文章 · python教程 | 6小时前 |
- python编程语言优势与其他语言对比
- 123浏览 收藏
-
- 文章 · python教程 | 7小时前 |
- Python函数定义及调用全解析
- 240浏览 收藏
-
- 文章 · python教程 | 7小时前 | Matplotlib 性能优化 数据可视化 基本使用 高级定制
- Pythonmatplotlib绘图技巧与示例详解
- 433浏览 收藏
查看更多
课程推荐
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
查看更多
AI推荐
-
- 毕业宝AIGC检测
- 毕业宝AIGC检测是“毕业宝”平台的AI生成内容检测工具,专为学术场景设计,帮助用户初步判断文本的原创性和AI参与度。通过与知网、维普数据库联动,提供全面检测结果,适用于学生、研究者、教育工作者及内容创作者。
- 23次使用
-
- AI Make Song
- AI Make Song是一款革命性的AI音乐生成平台,提供文本和歌词转音乐的双模式输入,支持多语言及商业友好版权体系。无论你是音乐爱好者、内容创作者还是广告从业者,都能在这里实现“用文字创造音乐”的梦想。平台已生成超百万首原创音乐,覆盖全球20个国家,用户满意度高达95%。
- 33次使用
-
- SongGenerator
- 探索SongGenerator.io,零门槛、全免费的AI音乐生成器。无需注册,通过简单文本输入即可生成多风格音乐,适用于内容创作者、音乐爱好者和教育工作者。日均生成量超10万次,全球50国家用户信赖。
- 30次使用
-
- BeArt AI换脸
- 探索BeArt AI换脸工具,免费在线使用,无需下载软件,即可对照片、视频和GIF进行高质量换脸。体验快速、流畅、无水印的换脸效果,适用于娱乐创作、影视制作、广告营销等多种场景。
- 34次使用
-
- 协启动
- SEO摘要协启动(XieQiDong Chatbot)是由深圳协启动传媒有限公司运营的AI智能服务平台,提供多模型支持的对话服务、文档处理和图像生成工具,旨在提升用户内容创作与信息处理效率。平台支持订阅制付费,适合个人及企业用户,满足日常聊天、文案生成、学习辅助等需求。
- 36次使用
查看更多
相关文章
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览