分步指南:从本地路径加载 HuggingFace ControlNet 数据集
小伙伴们有没有觉得学习文章很有意思?有意思就对了!今天就给大家带来《分步指南:从本地路径加载 HuggingFace ControlNet 数据集》,以下内容将会涉及到,若是在学习中对其中部分知识点有疑问,或许看了本文就能帮到你!
huggingface 提供了不同的选项来加载数据集。为 controlnet 加载本地图像数据集时,重要的是要考虑数据集结构、文件路径以及与 huggingface 数据处理工具的兼容性等方面。
假设您已经创建了调节图像并且具有以下文件夹结构:
my_dataset/ ├── readme.md └──data/ ├── captions.jsonl ├── conditioning_images │ ├── 00001.jpg │ └── 00002.jpg └── images ├── 00001.jpg └── 00002.jpg
在此结构中,conditioning_images 文件夹存储您的调节图像,而 images 文件夹包含 controlnet 的目标图像。 captions.jsonl 文件包含链接到这些图像的标题。
{"image": "images/00001.jpg", "text": "this is the caption of the first image."} {"image": "images/00002.jpg", "text": "this is the caption of the second image."}
注意
字幕文件(或下面的元数据文件)也可以是csv文件。但是,如果您选择 csv,请注意值分隔符,因为文本可能包含逗号,这可能会导致解析问题。
创建元数据文件
元数据文件是提供有关数据集的附加信息的好方法。它可以包含各种类型的数据,例如边界框、类别、文本,或者在我们的例子中,是条件图像的路径。
让我们创建metadata.jsonl 文件:
import json from pathlib import path def create_metadata(data_dir, output_file): metadata = [] try: with open(f"{data_dir}/captions.jsonl", "r") as f: for line in f: data = json.loads(line) file_name = path(data["image"]).name metadata.append( { "image": data["image"], "conditioning_image": f"conditioning_images/{file_name}", "text": data["text"], } ) with open(f"{data_dir}/metadata.jsonl", "w") as f: for line in metadata: f.write(json.dumps(line) + "\n") except (filenotfounderror, json.jsondecodeerror) as e: print(f"error processing data: {e}") # example usage: data_dir = "my_dataset/data" create_metadata(data_dir)
这将创建一个metadata.jsonl,其中包含controlnet 所需的所有信息。文件中的每一行对应一个图像、一个条件图像和相关的文本标题。
{"image": "images/00001.jpg", "conditioning_image": "conditioning_images/00001.jpg", "text": "this is the caption of the first image."} {"image": "images/00002.jpg", "conditioning_image": "conditioning_images/00002.jpg", "text": "this is the caption of the second image."}
创建metadata.jsonl 文件后,您的文件结构应如下所示:
my_dataset/ ├── readme.md └──data/ ├── captions.jsonl ├── metadata.jsonl ├── conditioning_images │ ├── 00001.jpg │ └── 00002.jpg └── images ├── 00001.jpg └── 00002.jpg
创建加载脚本
最后,我们必须创建一个加载脚本来处理metadata.jsonl 文件中的所有数据。该脚本应与数据集位于同一目录中,并且应具有相同的名称。
你的目录结构应该是这样的:
my_dataset/ ├── readme.md ├── my_dataset.py └──data/ ├── captions.jsonl ├── metadata.jsonl ├── conditioning_images │ ├── 00001.jpg │ └── 00002.jpg └── images ├── 00001.jpg └── 00002.jpg
对于脚本,我们需要实现一个继承自 generatorbasedbuilder 的类,并包含以下三个方法:
- _info 存储有关您的数据集的信息。
- _split_generators 定义分割。
- _generate_examples 为每个分割生成图像和标签。
import datasets class mydataset(datasets.generatorbasedbuilder): def _info(self): def _split_generators(self, dl_manager): def _generate_examples(self, metadata_path, images_dir, conditioning_images_dir):
添加数据集元数据
有很多选项可用于指定有关数据集的信息,但最重要的是:
-
features 指定数据集列类型。
- 图像是图像特征
- conditioning_image 是一个图像特征
- text 是一个字符串值
- 指定输入特征的监督键。
# global variables _description = "todo" _homepage = "todo" _license = "todo" _citation = "todo" _features = datasets.features( { "image": datasets.image(), "conditioning_image": datasets.image(), "text": datasets.value("string"), }, )
正如您在上面看到的,我已将一些变量设置为“todo”。这些选项仅供参考,不会影响加载。
def _info(self): return datasets.datasetinfo( description=_description, features=_features, supervised_keys=("conditioning_image", "text"), homepage=_homepage, license=_license, citation=_citation, )
定义数据集分割
dl_manager 用于从 huggingface 存储库下载数据集,但这里我们使用它来获取在 load_dataset 函数中传递的数据目录路径。
这里我们定义数据的本地路径
- metadata_pathmetadata.jsonl 文件的路径
- images_dir 图像的路径
- conditioning_images_dir 调节图像的路径
注意
如果您为文件夹结构选择了不同的名称,则可能需要调整metadata_path、images_dir 和conditioning_images_dir 变量。
def _split_generators(self, dl_manager): base_path = path(dl_manager._base_path).resolve() metadata_path = base_path / "data" / "metadata.jsonl" images_dir = base_path / "data" conditioning_images_dir = base_path / "data" return [ datasets.splitgenerator( name=datasets.split.train, # these kwargs will be passed to _generate_examples gen_kwargs={ "metadata_path": str(metadata_path), "images_dir": str(images_dir), "conditioning_images_dir": str(conditioning_images_dir), }, ), ]
最后一个方法加载 matadata.jsonl 文件并生成图像及其关联的调节图像和文本。
@staticmethod def load_jsonl(path): """generator to load jsonl file.""" with open(path, "r") as f: for line in f: yield json.loads(line) def _generate_examples(self, metadata_path, images_dir, conditioning_images_dir): for row in self.load_jsonl(metadata_path): text = row["text"] image_path = row["image"] image_path = os.path.join(images_dir, image_path) image = open(image_path, "rb").read() conditioning_image_path = row["conditioning_image"] conditioning_image_path = os.path.join( conditioning_images_dir, row["conditioning_image"] ) conditioning_image = open(conditioning_image_path, "rb").read() yield row["image"], { "text": text, "image": { "path": image_path, "bytes": image, }, "conditioning_image": { "path": conditioning_image_path, "bytes": conditioning_image, }, }
按照以下步骤,您可以从本地路径加载 controlnet 数据集。
# with the loading script, we can load the dataset ds = load_dataset("my_dataset") # (optional) # pass trust_remote_code=true to avoid the warning about custom code # ds = load_dataset("my_dataset", trust_remote_code=true)
如果您有任何疑问,请随时在下面留言。
加载脚本的完整代码:
import os import json import datasets from pathlib import Path _VERSION = datasets.Version("0.0.2") _DESCRIPTION = "TODO" _HOMEPAGE = "TODO" _LICENSE = "TODO" _CITATION = "TODO" _FEATURES = datasets.Features( { "image": datasets.Image(), "conditioning_image": datasets.Image(), "text": datasets.Value("string"), }, ) _DEFAULT_CONFIG = datasets.BuilderConfig(name="default", version=_VERSION) class MyDataset(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [_DEFAULT_CONFIG] DEFAULT_CONFIG_NAME = "default" def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=_FEATURES, supervised_keys=("conditioning_image", "text"), homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): base_path = Path(dl_manager._base_path) metadata_path = base_path / "data" / "metadata.jsonl" images_dir = base_path / "data" conditioning_images_dir = base_path / "data" return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, # These kwargs will be passed to _generate_examples gen_kwargs={ "metadata_path": metadata_path, "images_dir": images_dir, "conditioning_images_dir": conditioning_images_dir, }, ), ] @staticmethod def load_jsonl(path): """Generator to load jsonl file.""" with open(path, "r") as f: for line in f: yield json.loads(line) def _generate_examples(self, metadata_path, images_dir, conditioning_images_dir): for row in self.load_jsonl(metadata_path): text = row["text"] image_path = row["image"] image_path = os.path.join(images_dir, image_path) image = open(image_path, "rb").read() conditioning_image_path = row["conditioning_image"] conditioning_image_path = os.path.join( conditioning_images_dir, row["conditioning_image"] ) conditioning_image = open(conditioning_image_path, "rb").read() yield row["image"], { "text": text, "image": { "path": image_path, "bytes": image, }, "conditioning_image": { "path": conditioning_image_path, "bytes": conditioning_image, }, }
今天带大家了解了的相关知识,希望对你有所帮助;关于文章的技术知识我们会一点点深入介绍,欢迎大家关注golang学习网公众号,一起学习编程~

- 上一篇
- PHP 函数如何获取 cookie?

- 下一篇
- PHP 函数命名中的前缀使用
-
- 文章 · python教程 | 1分钟前 |
- Flask-Login在Python中的使用方法及示例
- 496浏览 收藏
-
- 文章 · python教程 | 7分钟前 |
- 字典键可用类型:字符串、数字、元组(元素不可变)
- 399浏览 收藏
-
- 文章 · python教程 | 21分钟前 | orm 性能问题 多表关联查询 学习曲线 sqlalchemy
- Python多表关联查询技巧及实现方法
- 353浏览 收藏
-
- 文章 · python教程 | 1小时前 | windows系统 永久删除 Python环境变量 临时移除 shell配置文件
- Python环境变量删除指南及移除技巧
- 398浏览 收藏
-
- 文章 · python教程 | 2小时前 | scikit-learn Pandas 特征工程 缺失值 数据编码
- Python特征工程实战技巧与方法
- 288浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- 用Pythonturtle绘制“梁”字书法指南
- 494浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- Python中定义抽象类及示例方法
- 184浏览 收藏
-
- 文章 · python教程 | 5小时前 | Python 多态 代码可读性 鸭子类型 functools.singledispatch
- Python多态实现技巧及方法
- 131浏览 收藏
-
- 文章 · python教程 | 5小时前 |
- Pygame打包成exe后报错解决方案
- 487浏览 收藏
-
- 文章 · python教程 | 5小时前 | Python elasticsearch 性能优化 批量索引 文档映射
- Python索引文档到Elasticsearch的实用技巧
- 498浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 毕业宝AIGC检测
- 毕业宝AIGC检测是“毕业宝”平台的AI生成内容检测工具,专为学术场景设计,帮助用户初步判断文本的原创性和AI参与度。通过与知网、维普数据库联动,提供全面检测结果,适用于学生、研究者、教育工作者及内容创作者。
- 16次使用
-
- AI Make Song
- AI Make Song是一款革命性的AI音乐生成平台,提供文本和歌词转音乐的双模式输入,支持多语言及商业友好版权体系。无论你是音乐爱好者、内容创作者还是广告从业者,都能在这里实现“用文字创造音乐”的梦想。平台已生成超百万首原创音乐,覆盖全球20个国家,用户满意度高达95%。
- 26次使用
-
- SongGenerator
- 探索SongGenerator.io,零门槛、全免费的AI音乐生成器。无需注册,通过简单文本输入即可生成多风格音乐,适用于内容创作者、音乐爱好者和教育工作者。日均生成量超10万次,全球50国家用户信赖。
- 24次使用
-
- BeArt AI换脸
- 探索BeArt AI换脸工具,免费在线使用,无需下载软件,即可对照片、视频和GIF进行高质量换脸。体验快速、流畅、无水印的换脸效果,适用于娱乐创作、影视制作、广告营销等多种场景。
- 26次使用
-
- 协启动
- SEO摘要协启动(XieQiDong Chatbot)是由深圳协启动传媒有限公司运营的AI智能服务平台,提供多模型支持的对话服务、文档处理和图像生成工具,旨在提升用户内容创作与信息处理效率。平台支持订阅制付费,适合个人及企业用户,满足日常聊天、文案生成、学习辅助等需求。
- 28次使用
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览