当前位置:首页 > 文章列表 > 文章 > python教程 > 最大子数组问题和kadane算法

最大子数组问题和kadane算法

来源:dev.to 2024-08-14 16:51:51 0浏览 收藏

哈喽!今天心血来潮给大家带来了《最大子数组问题和kadane算法》,想必大家应该对文章都不陌生吧,那么阅读本文就都不会很困难,以下内容主要涉及到,若是你正在学习文章,千万别错过这篇文章~希望能帮助到你!

最大子数组问题及其历史

20世纪70年代末,瑞典数学家ulf grenander一直在讨论一个问题:如何比暴力破解更有效地分析二维图像数据数组?那时的计算机速度很慢,图片相对于 ram 来说也很大。更糟糕的是,在最坏的情况下,暴力破解需要 o(n^6) 时间(六次时间复杂度)。

首先,grenandier 简化了问题:给定一个一维数字数组,如何最有效地找到总和最大的连续子数组?

最大子数组问题和kadane算法

蛮力:一种具有立方时间复杂度的简单方法

蛮力,分析一维数组的时间是分析二维数组的一半,所以 o(n^3) 来检查每个可能的组合(立方时间复杂度)。

def max_subarray_brute_force(arr):
    max_sum = arr[0] # assumes arr has a length

    # iterate over all possible subarrays
    for i in range(len(arr)):
        for j in range(i, len(arr)):
            current_sum = 0
            # sum the elements of the subarray arr[i:j+1]
            for k in range(i, j + 1):
                current_sum += arr[k]
            # update max_sum if the current sum is greater
            max_sum = max(max_sum, current_sum)

    return max_sum

print(max_subarray_brute_force([-2, -3, 4, -1, -2, 1, 5, -3]), "== 7")

grenander 的 o(n²) 优化:向前迈出了一步

grenander 将其改进为 o(n^2) 解决方案。我在研究中找不到他的代码,但我的猜测是他只是摆脱了最内层的循环,该循环将两个索引之间的所有数字相加。相反,我们可以在迭代子数组时保留运行总和,从而将循环次数从三个减少到两个。

def max_subarray_optimized(arr):
    max_sum = arr[0]  # assumes arr has a length

    # iterate over all possible starting points of the subarray
    for i in range(len(arr)):
        current_sum = 0
        # sum the elements of the subarray starting from arr[i]
        for j in range(i, len(arr)):
            current_sum += arr[j]
            # update max_sum if the current sum is greater
            max_sum = max(max_sum, current_sum)

    return max_sum

shamos 的分而治之:将问题分解为 o(n log n)

grenander 向计算机科学家 michael shamos 展示了这个问题。 shamos思考了一晚上,想出了一个分而治之的方法,o(n log n)。

真是太聪明了。想法是将数组分成两半,然后递归地找到每一半的最大子数组和以及穿过中点的子数组。

def max_crossing_sum(arr, left, mid, right):
    # left of mid
    left_sum = float('-inf')
    current_sum = 0
    for i in range(mid, left - 1, -1):
        current_sum += arr[i]
        left_sum = max(left_sum, current_sum)

    # right of mid
    right_sum = float('inf')
    current_sum = 0
    for i in range(mid + 1, right + 1):
        current_sum += arr[i]
        right_sum = max(right_sum, current_sum)

    # sum of elements on the left and right of mid, which is the maximum sum that crosses the midpoint
    return left_sum + right_sum

def max_subarray_divide_and_conquer(arr, left, right):
    # base case: only one element
    if left == right:
        return arr[left]

    # find the midpoint
    mid = (left + right) // 2

    # recursively find the maximum subarray sum for the left and right halves
    left_sum = max_subarray_divide_and_conquer(arr, left, mid)
    right_sum = max_subarray_divide_and_conquer(arr, mid + 1, right)
    cross_sum = max_crossing_sum(arr, left, mid, right)

    # return the maximum of the three possible cases
    return max(left_sum, right_sum, cross_sum)

def max_subarray(arr):
    return max_subarray_divide_and_conquer(arr, 0, len(arr) - 1)


print(max_subarray([-2, -3, 4, -1, -2, 1, 5, -3]), "== 7")


这将时间复杂度降低到 o(nlogn) 时间,因为首先将数组分为两半 (o(logn)),然后找到最大交叉子数组需要 o(n)

kadane 算法:优雅的 o(n) 解决方案

统计学家 jay kadane 看了代码,立即发现 shamos 的解决方案未能使用邻接约束作为解决方案的一部分。

这是他意识到的

-如果数组只有负数,那么答案将始终是数组中最大的数字,假设我们不允许空子数组。

-如果数组只有正数,答案总是将整个数组相加。

-如果你有一个同时包含正数和负数的数组,那么你可以一步步遍历该数组。如果在任何时候您正在查看的数字大于其之前的所有数字的总和,则解决方案不能包含任何先前的数字。因此,您从当前数字开始一个新的总和,同时跟踪迄今为止遇到的最大总和。


maxSubArray(nums):
    # avoiding type errors or index out of bounds errors
    if nums is None or len(nums) == 0:
        return 0


    max_sum = nums[0]  # max sum can't be smaller than any given element
    curr_sum = 0

    # Kadane's algorithm
    for num in nums:
        curr_sum = max(num, curr_sum + num)
        max_sum = max(curr_sum, max_sum)
    return max_sum


我喜欢这个算法的原因是它可以应用于许多其他问题。尝试调整它来解决这些 leetcode 问题:

一和零
圆形子数组的最大和
最小子数组总和
最大升序子数组和
最大产品子数组
连续子数组和
最大交替和子数组(高级)
矩形的最大和不大于 k

到这里,我们也就讲完了《最大子数组问题和kadane算法》的内容了。个人认为,基础知识的学习和巩固,是为了更好的将其运用到项目中,欢迎关注golang学习网公众号,带你了解更多关于的知识点!

版本声明
本文转载于:dev.to 如有侵犯,请联系study_golang@163.com删除
极氪007大动作!增配还降价,已下单用户赚翻了?极氪007大动作!增配还降价,已下单用户赚翻了?
上一篇
极氪007大动作!增配还降价,已下单用户赚翻了?
汽车均价破18万!BBA涨价,增程火了?
下一篇
汽车均价破18万!BBA涨价,增程火了?
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • AI Make Song:零门槛AI音乐创作平台,助你轻松制作个性化音乐
    AI Make Song
    AI Make Song是一款革命性的AI音乐生成平台,提供文本和歌词转音乐的双模式输入,支持多语言及商业友好版权体系。无论你是音乐爱好者、内容创作者还是广告从业者,都能在这里实现“用文字创造音乐”的梦想。平台已生成超百万首原创音乐,覆盖全球20个国家,用户满意度高达95%。
    21次使用
  • SongGenerator.io:零门槛AI音乐生成器,快速创作高质量音乐
    SongGenerator
    探索SongGenerator.io,零门槛、全免费的AI音乐生成器。无需注册,通过简单文本输入即可生成多风格音乐,适用于内容创作者、音乐爱好者和教育工作者。日均生成量超10万次,全球50国家用户信赖。
    17次使用
  •  BeArt AI换脸:免费在线工具,轻松实现照片、视频、GIF换脸
    BeArt AI换脸
    探索BeArt AI换脸工具,免费在线使用,无需下载软件,即可对照片、视频和GIF进行高质量换脸。体验快速、流畅、无水印的换脸效果,适用于娱乐创作、影视制作、广告营销等多种场景。
    17次使用
  • SEO标题协启动:AI驱动的智能对话与内容生成平台 - 提升创作效率
    协启动
    SEO摘要协启动(XieQiDong Chatbot)是由深圳协启动传媒有限公司运营的AI智能服务平台,提供多模型支持的对话服务、文档处理和图像生成工具,旨在提升用户内容创作与信息处理效率。平台支持订阅制付费,适合个人及企业用户,满足日常聊天、文案生成、学习辅助等需求。
    20次使用
  • Brev AI:零注册门槛的全功能免费AI音乐创作平台
    Brev AI
    探索Brev AI,一个无需注册即可免费使用的AI音乐创作平台,提供多功能工具如音乐生成、去人声、歌词创作等,适用于内容创作、商业配乐和个人创作,满足您的音乐需求。
    22次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码