最大子数组问题和kadane算法
哈喽!今天心血来潮给大家带来了《最大子数组问题和kadane算法》,想必大家应该对文章都不陌生吧,那么阅读本文就都不会很困难,以下内容主要涉及到,若是你正在学习文章,千万别错过这篇文章~希望能帮助到你!
最大子数组问题及其历史
20世纪70年代末,瑞典数学家ulf grenander一直在讨论一个问题:如何比暴力破解更有效地分析二维图像数据数组?那时的计算机速度很慢,图片相对于 ram 来说也很大。更糟糕的是,在最坏的情况下,暴力破解需要 o(n^6) 时间(六次时间复杂度)。
首先,grenandier 简化了问题:给定一个一维数字数组,如何最有效地找到总和最大的连续子数组?

蛮力:一种具有立方时间复杂度的简单方法
蛮力,分析一维数组的时间是分析二维数组的一半,所以 o(n^3) 来检查每个可能的组合(立方时间复杂度)。
def max_subarray_brute_force(arr):
max_sum = arr[0] # assumes arr has a length
# iterate over all possible subarrays
for i in range(len(arr)):
for j in range(i, len(arr)):
current_sum = 0
# sum the elements of the subarray arr[i:j+1]
for k in range(i, j + 1):
current_sum += arr[k]
# update max_sum if the current sum is greater
max_sum = max(max_sum, current_sum)
return max_sum
print(max_subarray_brute_force([-2, -3, 4, -1, -2, 1, 5, -3]), "== 7")
grenander 的 o(n²) 优化:向前迈出了一步
grenander 将其改进为 o(n^2) 解决方案。我在研究中找不到他的代码,但我的猜测是他只是摆脱了最内层的循环,该循环将两个索引之间的所有数字相加。相反,我们可以在迭代子数组时保留运行总和,从而将循环次数从三个减少到两个。
def max_subarray_optimized(arr):
max_sum = arr[0] # assumes arr has a length
# iterate over all possible starting points of the subarray
for i in range(len(arr)):
current_sum = 0
# sum the elements of the subarray starting from arr[i]
for j in range(i, len(arr)):
current_sum += arr[j]
# update max_sum if the current sum is greater
max_sum = max(max_sum, current_sum)
return max_sum
shamos 的分而治之:将问题分解为 o(n log n)
grenander 向计算机科学家 michael shamos 展示了这个问题。 shamos思考了一晚上,想出了一个分而治之的方法,o(n log n)。
真是太聪明了。想法是将数组分成两半,然后递归地找到每一半的最大子数组和以及穿过中点的子数组。
def max_crossing_sum(arr, left, mid, right):
# left of mid
left_sum = float('-inf')
current_sum = 0
for i in range(mid, left - 1, -1):
current_sum += arr[i]
left_sum = max(left_sum, current_sum)
# right of mid
right_sum = float('inf')
current_sum = 0
for i in range(mid + 1, right + 1):
current_sum += arr[i]
right_sum = max(right_sum, current_sum)
# sum of elements on the left and right of mid, which is the maximum sum that crosses the midpoint
return left_sum + right_sum
def max_subarray_divide_and_conquer(arr, left, right):
# base case: only one element
if left == right:
return arr[left]
# find the midpoint
mid = (left + right) // 2
# recursively find the maximum subarray sum for the left and right halves
left_sum = max_subarray_divide_and_conquer(arr, left, mid)
right_sum = max_subarray_divide_and_conquer(arr, mid + 1, right)
cross_sum = max_crossing_sum(arr, left, mid, right)
# return the maximum of the three possible cases
return max(left_sum, right_sum, cross_sum)
def max_subarray(arr):
return max_subarray_divide_and_conquer(arr, 0, len(arr) - 1)
print(max_subarray([-2, -3, 4, -1, -2, 1, 5, -3]), "== 7")
这将时间复杂度降低到 o(nlogn) 时间,因为首先将数组分为两半 (o(logn)),然后找到最大交叉子数组需要 o(n)
kadane 算法:优雅的 o(n) 解决方案
统计学家 jay kadane 看了代码,立即发现 shamos 的解决方案未能使用邻接约束作为解决方案的一部分。
这是他意识到的
-如果数组只有负数,那么答案将始终是数组中最大的数字,假设我们不允许空子数组。
-如果数组只有正数,答案总是将整个数组相加。
-如果你有一个同时包含正数和负数的数组,那么你可以一步步遍历该数组。如果在任何时候您正在查看的数字大于其之前的所有数字的总和,则解决方案不能包含任何先前的数字。因此,您从当前数字开始一个新的总和,同时跟踪迄今为止遇到的最大总和。
maxSubArray(nums):
# avoiding type errors or index out of bounds errors
if nums is None or len(nums) == 0:
return 0
max_sum = nums[0] # max sum can't be smaller than any given element
curr_sum = 0
# Kadane's algorithm
for num in nums:
curr_sum = max(num, curr_sum + num)
max_sum = max(curr_sum, max_sum)
return max_sum
我喜欢这个算法的原因是它可以应用于许多其他问题。尝试调整它来解决这些 leetcode 问题:
一和零
圆形子数组的最大和
最小子数组总和
最大升序子数组和
最大产品子数组
连续子数组和
最大交替和子数组(高级)
矩形的最大和不大于 k
到这里,我们也就讲完了《最大子数组问题和kadane算法》的内容了。个人认为,基础知识的学习和巩固,是为了更好的将其运用到项目中,欢迎关注golang学习网公众号,带你了解更多关于的知识点!
极氪007大动作!增配还降价,已下单用户赚翻了?
- 上一篇
- 极氪007大动作!增配还降价,已下单用户赚翻了?
- 下一篇
- 汽车均价破18万!BBA涨价,增程火了?
-
- 文章 · python教程 | 2小时前 |
- NumPy位异或归约操作全解析
- 259浏览 收藏
-
- 文章 · python教程 | 3小时前 |
- Python遍历读取所有文件技巧
- 327浏览 收藏
-
- 文章 · python教程 | 3小时前 |
- Python中index的作用及使用方法
- 358浏览 收藏
-
- 文章 · python教程 | 4小时前 |
- Python快速访问嵌套字典键值对
- 340浏览 收藏
-
- 文章 · python教程 | 4小时前 |
- Python中ch代表字符的用法解析
- 365浏览 收藏
-
- 文章 · python教程 | 4小时前 |
- NumPy1D近邻查找:向量化优化技巧
- 391浏览 收藏
-
- 文章 · python教程 | 4小时前 | 正则表达式 字符串操作 re模块 Python文本处理 文本清洗
- Python正则表达式实战教程详解
- 392浏览 收藏
-
- 文章 · python教程 | 5小时前 |
- BehaveFixture临时目录管理技巧
- 105浏览 收藏
-
- 文章 · python教程 | 5小时前 | Python 余数 元组 divmod()函数 商
- divmod函数详解与使用技巧
- 442浏览 收藏
-
- 文章 · python教程 | 6小时前 |
- Python多进程共享字符串内存技巧
- 291浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 500次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 485次学习
-
- ChatExcel酷表
- ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
- 3204次使用
-
- Any绘本
- 探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
- 3416次使用
-
- 可赞AI
- 可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
- 3446次使用
-
- 星月写作
- 星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
- 4555次使用
-
- MagicLight
- MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
- 3824次使用
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览

