当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > ACM MM2024 | 网易伏羲多模态研究再获国际认可,推动特定领域跨模态理解新突破

ACM MM2024 | 网易伏羲多模态研究再获国际认可,推动特定领域跨模态理解新突破

来源:网易伏羲 2024-08-07 19:27:37 0浏览 收藏

亲爱的编程学习爱好者,如果你点开了这篇文章,说明你对《ACM MM2024 | 网易伏羲多模态研究再获国际认可,推动特定领域跨模态理解新突破》很感兴趣。本篇文章就来给大家详细解析一下,主要介绍一下,希望所有认真读完的童鞋们,都有实质性的提高。

ACM MM2024 | 网易伏羲多模态研究再获国际认可,推动特定领域跨模态理解新突破

1. 第32届ACM国际多媒体学术会议(ACM International Conference on Multimedia,简称ACM MM)公布论文接收结果,网易伏羲最新研究成果《Selection and Reconstruction of Key Locals: A Novel Specific Domain Image-Text Retrieval Method》入选。
  1. 该论文研究方向涉及视觉语言预训练(VLP)、跨模态图文检索(CMITR)等领域。此次入选标志着网易伏羲实验室多模态能力再受国际认可,目前相关技术已应用至网易伏羲自研多模态智能体助手“丹青约”。
  2. ACM MM由国际计算机协会(ACM)发起,是多媒体处理、分析与计算领域最具影响力的国际顶级会议,也是中国计算机学会推荐的多媒体领域A类国际学术会议。作为领域内的顶级会议,ACM MM 受到国内外知名厂商和学者广泛关注。本届ACM MM共收到有效稿件4385篇,其中1149篇被大会接收,接收率为26.20%。

    ACM MM2024 | 网易伏羲多模态研究再获国际认可,推动特定领域跨模态理解新突破

    作为国内领先的人工智能研究机构,网易伏羲在大规模模型研究领域已有近六年的深厚积累,具备丰富的算法和工程经验,先后打造了数十个文本和多模态预训练模型,包括文本理解和生成大模型、图文理解大模型、图文生成大模型等。这些成果不仅有效推动了大模型在游戏领域的应用,也为跨模态理解能力的发展奠定了坚实的基础。跨模态理解能力有助于更好地融合多种领域知识,并对齐丰富的数据模态及信息。

在此基础上,网易伏羲基于图文理解大模型进一步创新,提出一种基于关键局部信息的选取与重建的跨模态检索方法,为多模态智能体解决特定领域下的图像文本交互问题奠定技术基础。

以下为本次入选论文概要:

《Selection and Reconstruction of Key Locals: A Novel Specific Domain Image-Text Retrieval Method》

关键局部信息的选取与重建:一种新颖的特定领域图文检索方法

关键词:关键局部信息,细粒度,可解释

涉及领域:视觉语言预训练(VLP),跨模态图文检索(CMITR)

近年来,随着视觉语言预训练 (Vision-Language Pretraining, VLP) 模型的兴起,跨模态图像文本检索 (Cross-Modal Image-Text Retrieval, CMITR) 领域取得了显著进展。尽管像 CLIP 这样的 VLP 模型在一般领域的 CMITR 任务中表现出色,但在特定领域图像文本检索 (Specific Domain Image-Text Retrieval, SDITR) 中,其性能往往会存在不足。这是因为特定领域通常具有独特的数据特征,这些特征区别于一般领域。

在特定领域内,图像之间可能展现出高度的视觉相似性,而语义差异则往往集中在关键的局部细节上,例如图像中的特定对象区域或文本中含义丰富的词汇。即使是这些局部片段的细微变化也可能对整个内容产生显著影响,从而凸显了这些关键局部信息的重要性。因此,SDITR 要求模型专注于关键的局部信息片段,以增强图像与文本特征在共享表示空间中的表达,进而改进图像与文本之间的对齐精度。

本课题通过探索视觉语言预训练模型在特定领域图像-文本检索任务中的应用,研究了特定领域图像-文本检索任务中的局部特征利用问题。主要贡献在于提出了一种利用具有判别性的细粒度局部信息的方法,优化图像与文本在共享表示空间中的对齐。

为此,我们设计了显式关键局部信息选择和重建框架和基于多模态交互的关键局部段重构策略,这些方法有效地利用了具有判别性的细粒度局部信息,从而显著提升了图像与文本在共享空间中的对齐质量,广泛和充分的实验证明了所提出策略的先进性和有效性。

在此特别感谢西安电子科技大学IPIU实验室对本论文的大力支持与重要研究贡献。

ACM MM2024 | 网易伏羲多模态研究再获国际认可,推动特定领域跨模态理解新突破

此项研究成果不仅标志着网易伏羲在多模态研究领域再次取得重要突破,也为特定领域的跨模态理解提供了全新的视角和技术支撑。优化图像与文本在特定场景下的交互准确度,这项工作为跨模态理解技术在实际应用场景中的提升奠定了坚实的基础。
目前,网易伏羲的多模态理解能力已在网易集团的多个业务部门得到广泛应用,包括网易雷火、网易云音乐、网易元气等。这些应用覆盖了诸如游戏创新性文字捏脸玩法、跨模态资源搜索、个性化内容推荐等多种场景,展现了巨大的业务价值。
未来,随着研究的深入与技术进步,该成果有望促进人工智能技术在教育、医疗、电子商务等多个行业的广泛应用,为用户提供更加个性化和智能化的服务体验。网易伏羲也将持续深化与国内外顶尖学术机构的交流与合作,在更多前沿研究领域展开深入探索,共同推动人工智能技术的发展,为构建一个更高效、更智能的社会贡献力量。
扫描下方二维码,立即体验“丹青约”,享受“更懂你”的图文并茂的多模交互体验!

ACM MM2024 | 网易伏羲多模态研究再获国际认可,推动特定领域跨模态理解新突破

好了,本文到此结束,带大家了解了《ACM MM2024 | 网易伏羲多模态研究再获国际认可,推动特定领域跨模态理解新突破》,希望本文对你有所帮助!关注golang学习网公众号,给大家分享更多科技周边知识!

版本声明
本文转载于:网易伏羲 如有侵犯,请联系study_golang@163.com删除
win10磁盘清理在哪里win10磁盘清理在哪里
上一篇
win10磁盘清理在哪里
欧盟《商品维修权条令》生效,赋予消费者新权益:手机等商品额外 12 个月保修
下一篇
欧盟《商品维修权条令》生效,赋予消费者新权益:手机等商品额外 12 个月保修
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • PPTFake答辩PPT生成器:一键生成高效专业的答辩PPT
    PPTFake答辩PPT生成器
    PPTFake答辩PPT生成器,专为答辩准备设计,极致高效生成PPT与自述稿。智能解析内容,提供多样模板,数据可视化,贴心配套服务,灵活自主编辑,降低制作门槛,适用于各类答辩场景。
    21次使用
  • SEO标题Lovart AI:全球首个设计领域AI智能体,实现全链路设计自动化
    Lovart
    SEO摘要探索Lovart AI,这款专注于设计领域的AI智能体,通过多模态模型集成和智能任务拆解,实现全链路设计自动化。无论是品牌全案设计、广告与视频制作,还是文创内容创作,Lovart AI都能满足您的需求,提升设计效率,降低成本。
    20次使用
  • 美图AI抠图:行业领先的智能图像处理技术,3秒出图,精准无误
    美图AI抠图
    美图AI抠图,依托CVPR 2024竞赛亚军技术,提供顶尖的图像处理解决方案。适用于证件照、商品、毛发等多场景,支持批量处理,3秒出图,零PS基础也能轻松操作,满足个人与商业需求。
    33次使用
  • SEO标题PetGPT:智能桌面宠物程序,结合AI对话的个性化陪伴工具
    PetGPT
    SEO摘要PetGPT 是一款基于 Python 和 PyQt 开发的智能桌面宠物程序,集成了 OpenAI 的 GPT 模型,提供上下文感知对话和主动聊天功能。用户可高度自定义宠物的外观和行为,支持插件热更新和二次开发。适用于需要陪伴和效率辅助的办公族、学生及 AI 技术爱好者。
    34次使用
  • 可图AI图片生成:快手可灵AI2.0引领图像创作新时代
    可图AI图片生成
    探索快手旗下可灵AI2.0发布的可图AI2.0图像生成大模型,体验从文本生成图像、图像编辑到风格转绘的全链路创作。了解其技术突破、功能创新及在广告、影视、非遗等领域的应用,领先于Midjourney、DALL-E等竞品。
    56次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码