当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > 离开OpenAI待业的Karpathy做了个大模型新项目,Star量一日破千

离开OpenAI待业的Karpathy做了个大模型新项目,Star量一日破千

来源:机器之心 2024-08-02 12:45:37 0浏览 收藏

在IT行业这个发展更新速度很快的行业,只有不停止的学习,才不会被行业所淘汰。如果你是科技周边学习者,那么本文《离开OpenAI待业的Karpathy做了个大模型新项目,Star量一日破千》就很适合你!本篇内容主要包括##content_title##,希望对大家的知识积累有所帮助,助力实战开发!

没工作也要「卷」。

闲不下来的 Andrej Karpathy 又有了新项目!

过去几天,OpenAI 非常热闹,先有 AI 大牛 Andrej Karpathy 官宣离职,后有视频生成模型 Sora 撼动 AI 圈。

在宣布离开 OpenAI 之后,Karpathy 发推表示「这周可以歇一歇了。」

离开OpenAI待业的Karpathy做了个大模型新项目,Star量一日破千

                               图源:https://twitter.com/karpathy/status/1757986972512239665

这种无事要做的状态让马斯克都羡慕(I am envious)了。

离开OpenAI待业的Karpathy做了个大模型新项目,Star量一日破千

但是,如果你真的认为 Karpathy 会闲下来,那就有点「too young, too navie」了。

这不,有眼尖的网友发现了 Karpathy 的新项目 ——minbpe,致力于为 LLM 分词中常用的 BPE(Byte Pair Encoding, 字节对编码)算法创建最少、干净以及教育性的代码

仅仅一天的时间,该项目的 GitHub 标星已经达到了 1.2 k。

离开OpenAI待业的Karpathy做了个大模型新项目,Star量一日破千                              图源:https://twitter.com/ZainHasan6/status/1758727767204495367

有人 P 了一张图,表示 Karpathy 为大家「烹制了一顿大餐」。

离开OpenAI待业的Karpathy做了个大模型新项目,Star量一日破千

                                         图源:https://twitter.com/andrewcyu/status/1758897928385561069

更有人欢呼,Karpathy is back。

离开OpenAI待业的Karpathy做了个大模型新项目,Star量一日破千图源:https://twitter.com/fouriergalois/status/1758775281391677477

我们来看一看「minbpe」项目具体讲了些什么。

项目介绍

离开OpenAI待业的Karpathy做了个大模型新项目,Star量一日破千

GitHub 地址:https://github.com/karpathy/minbpe

我们知道,BPE 算法是「字节级」的,在 UTF-8 编码的字符串上运行。该算法通过 GPT-2 论文和 GPT-2 相关的代码在大语言模型(LLM)中得到推广。

现如今,所有现代的 LLM(比如 GPT、Llama、Mistral)都使用 BPE 算法来训练它们的分词器(tokenizer)。

Karpathy 的 minbpe 项目存储库中提供了两个 Tokenizer,它们都可以执行分词器的 3 个主要功能:1)训练 tokenizer 词汇并合并给指定文本,2)从文本编码到 token,3)从 token 解码到文本。

详细的存储库文件分别如下:

  • minbpe/base.py:实现 Tokenizer 类,是基类。它包含了训练、编码和解码存根、保存 / 加载功能,还有一些常见的实用功能。不过,该类不应直接使用,而是要继承。
  • minbpe/basic.py:实现 BasicTokenizer,这是直接在文本上运行的 BPE 算法的最简单实现。
  • minbpe/regex.py:实现 RegexTokenizer,它通过正则表达式模式进一步拆分输入文本。作为一个预处理阶段,它在分词之前按类别(例如字母、数字、标点符号)拆分输入文本。这确保不会发生跨类别边界的合并。它是在 GPT-2 论文中引入的,并继续在 GPT-4 中使用。
  • minbpe/gpt4.py:实现 GPT4Tokenizer。此类是 RegexTokenizer 的轻量级封装,它精确地复现了 tiktoken(OpenAI 开源分词神器)库中 GPT-4 的分词。封装处理有关恢复 tokenizer 中精确合并的一些细节,并处理一些 1 字节的 token 排列。需要注意,奇偶校验尚未完全完成,没有处理特殊的 token。

脚本 train.py 在输入文本 tests/taylorswift.txt 上训练两个主要的 tokenizer,并将词汇保存到磁盘以进行可视化。Karpathy 称,该脚本在他的 MacBook (M1) 上运行大约需要 25 秒。

Karpathy 还表示,所有文件都非常短且注释详尽,并包含使用示例。如下为 BPE 维基百科文章的复现例子。
from minbpe import BasicTokenizertokenizer = BasicTokenizer()text = "aaabdaaabac"tokenizer.train(text, 256 + 3) # 256 are the byte tokens, then do 3 mergesprint(tokenizer.encode(text))# [258, 100, 258, 97, 99]print(tokenizer.decode([258, 100, 258, 97, 99]))# aaabdaaabactokenizer.save("toy")# writes two files: toy.model (for loading) and toy.vocab (for viewing)

此外还提供了如何实现 GPT4Tokenizer,以及它与 tiktoken 的比较。
text = "hello123!!!? (안녕하세요!) ?"# tiktokenimport tiktokenenc = tiktoken.get_encoding("cl100k_base")print(enc.encode(text))# [15339, 4513, 12340, 30, 320, 31495, 230, 75265, 243, 92245, 16715, 57037]# oursfrom minbpe import GPT4Tokenizertokenizer = GPT4Tokenizer()print(tokenizer.encode(text))# [15339, 4513, 12340, 30, 320, 31495, 230, 75265, 243, 92245, 16715, 57037]

当然,Karpathy 不满足只推出 GitHub 项目,他表示视频很快就会发布。

离开OpenAI待业的Karpathy做了个大模型新项目,Star量一日破千

扩展阅读:

理论要掌握,实操不能落!以上关于《离开OpenAI待业的Karpathy做了个大模型新项目,Star量一日破千》的详细介绍,大家都掌握了吧!如果想要继续提升自己的能力,那么就来关注golang学习网公众号吧!

版本声明
本文转载于:机器之心 如有侵犯,请联系study_golang@163.com删除
离开OpenAI待业的Karpathy做了个大模型新项目,Star量一日破千离开OpenAI待业的Karpathy做了个大模型新项目,Star量一日破千
上一篇
离开OpenAI待业的Karpathy做了个大模型新项目,Star量一日破千
能力对齐、长文本、Claude 3,这次聊聊大模型重点技术路径
下一篇
能力对齐、长文本、Claude 3,这次聊聊大模型重点技术路径
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 茅茅虫AIGC检测:精准识别AI生成内容,保障学术诚信
    茅茅虫AIGC检测
    茅茅虫AIGC检测,湖南茅茅虫科技有限公司倾力打造,运用NLP技术精准识别AI生成文本,提供论文、专著等学术文本的AIGC检测服务。支持多种格式,生成可视化报告,保障您的学术诚信和内容质量。
    116次使用
  • 赛林匹克平台:科技赛事聚合,赋能AI、算力、量子计算创新
    赛林匹克平台(Challympics)
    探索赛林匹克平台Challympics,一个聚焦人工智能、算力算法、量子计算等前沿技术的赛事聚合平台。连接产学研用,助力科技创新与产业升级。
    134次使用
  • SEO  笔格AIPPT:AI智能PPT制作,免费生成,高效演示
    笔格AIPPT
    SEO 笔格AIPPT是135编辑器推出的AI智能PPT制作平台,依托DeepSeek大模型,实现智能大纲生成、一键PPT生成、AI文字优化、图像生成等功能。免费试用,提升PPT制作效率,适用于商务演示、教育培训等多种场景。
    135次使用
  • 稿定PPT:在线AI演示设计,高效PPT制作工具
    稿定PPT
    告别PPT制作难题!稿定PPT提供海量模板、AI智能生成、在线协作,助您轻松制作专业演示文稿。职场办公、教育学习、企业服务全覆盖,降本增效,释放创意!
    123次使用
  • Suno苏诺中文版:AI音乐创作平台,人人都是音乐家
    Suno苏诺中文版
    探索Suno苏诺中文版,一款颠覆传统音乐创作的AI平台。无需专业技能,轻松创作个性化音乐。智能词曲生成、风格迁移、海量音效,释放您的音乐灵感!
    133次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码